Cargando…

Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery

The disruption of the cellular pathways of protein biosynthesis through the mechanism of RNA interference has been recognized as a tool of great diagnostic and therapeutic significance. However, in order to fully exploit the potential of this phenomenon, efficient and safe carriers capable of overco...

Descripción completa

Detalles Bibliográficos
Autores principales: Gorzkiewicz, Michał, Kopeć, Olga, Janaszewska, Anna, Konopka, Małgorzata, Pędziwiatr-Werbicka, Elżbieta, Tarasenko, Irina I., Bezrodnyi, Valeriy V., Neelov, Igor M., Klajnert-Maculewicz, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246632/
https://www.ncbi.nlm.nih.gov/pubmed/32365579
http://dx.doi.org/10.3390/ijms21093138
_version_ 1783537991790100480
author Gorzkiewicz, Michał
Kopeć, Olga
Janaszewska, Anna
Konopka, Małgorzata
Pędziwiatr-Werbicka, Elżbieta
Tarasenko, Irina I.
Bezrodnyi, Valeriy V.
Neelov, Igor M.
Klajnert-Maculewicz, Barbara
author_facet Gorzkiewicz, Michał
Kopeć, Olga
Janaszewska, Anna
Konopka, Małgorzata
Pędziwiatr-Werbicka, Elżbieta
Tarasenko, Irina I.
Bezrodnyi, Valeriy V.
Neelov, Igor M.
Klajnert-Maculewicz, Barbara
author_sort Gorzkiewicz, Michał
collection PubMed
description The disruption of the cellular pathways of protein biosynthesis through the mechanism of RNA interference has been recognized as a tool of great diagnostic and therapeutic significance. However, in order to fully exploit the potential of this phenomenon, efficient and safe carriers capable of overcoming extra- and intracellular barriers and delivering siRNA to the target cells are needed. Recently, attention has focused on the possibility of the application of multifunctional nanoparticles, dendrimers, as potential delivery devices for siRNA. The aim of the present work was to evaluate the formation of dendriplexes using novel poly(lysine) dendrimers (containing lysine and arginine or histidine residues in their structure), and to verify the hypothesis that the use of these polymers may allow an efficient method of siRNA transfer into the cells in vitro to be obtained. The fluorescence polarization studies, as well as zeta potential and hydrodynamic diameter measurements were used to characterize the dendrimer:siRNA complexes. The cytotoxicity of dendrimers and dendriplexes was evaluated with the resazurin-based assay. Using the flow cytometry technique, the efficiency of siRNA transport to the myeloid cells was determined. This approach allowed us to determine the properties and optimal molar ratios of dendrimer:siRNA complexes, as well as to demonstrate that poly(lysine) dendrimers may serve as efficient carriers of genetic material, being much more effective than the commercially available transfection agent Lipofectamine 2000. This outcome provides the basis for further research on the application of poly(lysine) dendrimers as carriers for nucleic acids in the field of gene therapy.
format Online
Article
Text
id pubmed-7246632
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72466322020-06-10 Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery Gorzkiewicz, Michał Kopeć, Olga Janaszewska, Anna Konopka, Małgorzata Pędziwiatr-Werbicka, Elżbieta Tarasenko, Irina I. Bezrodnyi, Valeriy V. Neelov, Igor M. Klajnert-Maculewicz, Barbara Int J Mol Sci Article The disruption of the cellular pathways of protein biosynthesis through the mechanism of RNA interference has been recognized as a tool of great diagnostic and therapeutic significance. However, in order to fully exploit the potential of this phenomenon, efficient and safe carriers capable of overcoming extra- and intracellular barriers and delivering siRNA to the target cells are needed. Recently, attention has focused on the possibility of the application of multifunctional nanoparticles, dendrimers, as potential delivery devices for siRNA. The aim of the present work was to evaluate the formation of dendriplexes using novel poly(lysine) dendrimers (containing lysine and arginine or histidine residues in their structure), and to verify the hypothesis that the use of these polymers may allow an efficient method of siRNA transfer into the cells in vitro to be obtained. The fluorescence polarization studies, as well as zeta potential and hydrodynamic diameter measurements were used to characterize the dendrimer:siRNA complexes. The cytotoxicity of dendrimers and dendriplexes was evaluated with the resazurin-based assay. Using the flow cytometry technique, the efficiency of siRNA transport to the myeloid cells was determined. This approach allowed us to determine the properties and optimal molar ratios of dendrimer:siRNA complexes, as well as to demonstrate that poly(lysine) dendrimers may serve as efficient carriers of genetic material, being much more effective than the commercially available transfection agent Lipofectamine 2000. This outcome provides the basis for further research on the application of poly(lysine) dendrimers as carriers for nucleic acids in the field of gene therapy. MDPI 2020-04-29 /pmc/articles/PMC7246632/ /pubmed/32365579 http://dx.doi.org/10.3390/ijms21093138 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gorzkiewicz, Michał
Kopeć, Olga
Janaszewska, Anna
Konopka, Małgorzata
Pędziwiatr-Werbicka, Elżbieta
Tarasenko, Irina I.
Bezrodnyi, Valeriy V.
Neelov, Igor M.
Klajnert-Maculewicz, Barbara
Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
title Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
title_full Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
title_fullStr Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
title_full_unstemmed Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
title_short Poly(lysine) Dendrimers Form Complexes with siRNA and Provide Its Efficient Uptake by Myeloid Cells: Model Studies for Therapeutic Nucleic Acid Delivery
title_sort poly(lysine) dendrimers form complexes with sirna and provide its efficient uptake by myeloid cells: model studies for therapeutic nucleic acid delivery
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246632/
https://www.ncbi.nlm.nih.gov/pubmed/32365579
http://dx.doi.org/10.3390/ijms21093138
work_keys_str_mv AT gorzkiewiczmichał polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery
AT kopecolga polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery
AT janaszewskaanna polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery
AT konopkamałgorzata polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery
AT pedziwiatrwerbickaelzbieta polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery
AT tarasenkoirinai polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery
AT bezrodnyivaleriyv polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery
AT neelovigorm polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery
AT klajnertmaculewiczbarbara polylysinedendrimersformcomplexeswithsirnaandprovideitsefficientuptakebymyeloidcellsmodelstudiesfortherapeuticnucleicaciddelivery