Cargando…

A Meta-Analysis of the Reliability of Four Field-Based Trunk Extension Endurance Tests

This meta-analysis aimed to estimate the inter- and intra-tester reliability of endurance measures obtained through trunk extension field-based tests and to explore the influence of the moderators on the reliability estimates. The reliability induction rate of trunk extension endurance measures was...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Romero, María Teresa, Ayala, Francisco, De Ste Croix, Mark, Vera-Garcia, Francisco J., Sainz de Baranda, Pilar, Santonja-Medina, Fernando, Sánchez-Meca, Julio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246735/
https://www.ncbi.nlm.nih.gov/pubmed/32365490
http://dx.doi.org/10.3390/ijerph17093088
Descripción
Sumario:This meta-analysis aimed to estimate the inter- and intra-tester reliability of endurance measures obtained through trunk extension field-based tests and to explore the influence of the moderators on the reliability estimates. The reliability induction rate of trunk extension endurance measures was also calculated. A systematic search was conducted using various databases, and subsequently 28 studies were selected that reported intraclass correlation coefficients for trunk extension endurance measures. Separate meta-analyses were conducted using a random-effects model. When possible, analyses of potential moderator variables were carried out. The inter-tester average reliability of the endurance measure obtained from the Biering-Sorensen test was intraclass correlation coefficient (ICC) = 0.94. The intra-session reliability estimates of the endurance measures recorded using the Biering-Sorensen test, the prone isometric chest raise test, and the prone double straight-leg test were ICC = 0.88, 0.90, and 0.86, respectively. The inter-session average reliability of the endurance measures from the Biering-Sorensen test, the prone isometric chest raise test, and the dynamic extensor endurance test were ICC = 0.88, 0.95, and 0.99, respectively. However, due to the limited evidence available, the reliability estimates of the measures obtained through the prone isometric chest raise, prone double straight-leg, and dynamic extensor endurance tests should be considered with a degree of caution. Position control instruments, tools, and familiarization session demonstrated a statistical association with the inter-session reliability of the Biering-Sorensen test. The reliability induction rate was 72.8%. Only the trunk extension endurance measure obtained through the Biering-Sorensen test presented sufficient scientific evidence in terms of reliability to justify its use for research and practical purposes.