Cargando…
Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics
[Image: see text] In recent years, deep learning has become a part of our everyday life and is revolutionizing quantum chemistry as well. In this work, we show how deep learning can be used to advance the research field of photochemistry by learning all important properties—multiple energies, forces...
Autores principales: | Westermayr, Julia, Gastegger, Michael, Marquetand, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246974/ https://www.ncbi.nlm.nih.gov/pubmed/32311258 http://dx.doi.org/10.1021/acs.jpclett.0c00527 |
Ejemplares similares
-
Nonadiabatic dynamics: The SHARC approach
por: Mai, Sebastian, et al.
Publicado: (2018) -
Machine Learning for Electronically Excited States
of Molecules
por: Westermayr, Julia, et al.
Publicado: (2020) -
Sch-net: a deep learning architecture for automatic detection of schizophrenia
por: Fu, Jia, et al.
Publicado: (2021) -
Machine learning enables long time scale molecular photodynamics simulations
por: Westermayr, Julia, et al.
Publicado: (2019) -
Limits on m_\scH Present and Future
por: Moenig, K
Publicado: (1998)