Cargando…

Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1)

OBJECTIVES: UHRF1 is a multi-domain protein that recognizes both histone and DNA modification marks on chromatin. UHRF1 is involved in various cellular processes that lead to tumorigenesis and thus attracted considerable attention as a potential anti-cancer drug target. The SRA domain is a unique to...

Descripción completa

Detalles Bibliográficos
Autor principal: Patnaik, Debasis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247125/
https://www.ncbi.nlm.nih.gov/pubmed/32448288
http://dx.doi.org/10.1186/s13104-020-05103-4
_version_ 1783538092767969280
author Patnaik, Debasis
author_facet Patnaik, Debasis
author_sort Patnaik, Debasis
collection PubMed
description OBJECTIVES: UHRF1 is a multi-domain protein that recognizes both histone and DNA modification marks on chromatin. UHRF1 is involved in various cellular processes that lead to tumorigenesis and thus attracted considerable attention as a potential anti-cancer drug target. The SRA domain is a unique to the UHRF family. SRA domain recognizes 5-methylcytosine in hemimethylated DNA and necessary for maintenance DNA methylation mediated by DNMT1. Small molecules capable of interacting with the SRA domain may reduce aberrant methylation levels by preventing the interaction of 5-methylcytosine with the SRA domain and thereby blocking substrate access to the catalytic center of DNMT1. The data were collected to identify and predict an initial set of small molecules that are expected to bind to the SRA domain. DATA DESCRIPTION: Nearly 2.4 million molecules from various chemical libraries were screened with the SRA domain of UHRF1 using Schrodinger’s Small Molecule Drug Discovery Suite. The data is available in the form of a methodology presentation, MS Excel files listing the top hits, and Maestro pose viewer files that provide visualization of how the identified ligands interact with the SRA domain.
format Online
Article
Text
id pubmed-7247125
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-72471252020-06-01 Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1) Patnaik, Debasis BMC Res Notes Data Note OBJECTIVES: UHRF1 is a multi-domain protein that recognizes both histone and DNA modification marks on chromatin. UHRF1 is involved in various cellular processes that lead to tumorigenesis and thus attracted considerable attention as a potential anti-cancer drug target. The SRA domain is a unique to the UHRF family. SRA domain recognizes 5-methylcytosine in hemimethylated DNA and necessary for maintenance DNA methylation mediated by DNMT1. Small molecules capable of interacting with the SRA domain may reduce aberrant methylation levels by preventing the interaction of 5-methylcytosine with the SRA domain and thereby blocking substrate access to the catalytic center of DNMT1. The data were collected to identify and predict an initial set of small molecules that are expected to bind to the SRA domain. DATA DESCRIPTION: Nearly 2.4 million molecules from various chemical libraries were screened with the SRA domain of UHRF1 using Schrodinger’s Small Molecule Drug Discovery Suite. The data is available in the form of a methodology presentation, MS Excel files listing the top hits, and Maestro pose viewer files that provide visualization of how the identified ligands interact with the SRA domain. BioMed Central 2020-05-24 /pmc/articles/PMC7247125/ /pubmed/32448288 http://dx.doi.org/10.1186/s13104-020-05103-4 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Data Note
Patnaik, Debasis
Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1)
title Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1)
title_full Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1)
title_fullStr Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1)
title_full_unstemmed Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1)
title_short Structure-based screening of chemical libraries to identify small molecules that are likely to bind with the SET and RING-associated (SRA) domain of Ubiquitin-like, PHD and Ring Finger-containing 1 (UHRF1)
title_sort structure-based screening of chemical libraries to identify small molecules that are likely to bind with the set and ring-associated (sra) domain of ubiquitin-like, phd and ring finger-containing 1 (uhrf1)
topic Data Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247125/
https://www.ncbi.nlm.nih.gov/pubmed/32448288
http://dx.doi.org/10.1186/s13104-020-05103-4
work_keys_str_mv AT patnaikdebasis structurebasedscreeningofchemicallibrariestoidentifysmallmoleculesthatarelikelytobindwiththesetandringassociatedsradomainofubiquitinlikephdandringfingercontaining1uhrf1