Cargando…

A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients – Design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC)

BACKGROUND: We have recently developed a highly accurate urine-based test, named Urodiag®, associating FGFR3 mutation and DNA methylation assays for recurrence surveillance in patients with low-, intermediate-, and high-risk NMIBC. Previously, the detection of four FGFR3 mutations (G372C, R248C, S24...

Descripción completa

Detalles Bibliográficos
Autores principales: Roperch, Jean-Pierre, Hennion, Claude
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247276/
https://www.ncbi.nlm.nih.gov/pubmed/32448160
http://dx.doi.org/10.1186/s12881-020-01050-w
_version_ 1783538126553088000
author Roperch, Jean-Pierre
Hennion, Claude
author_facet Roperch, Jean-Pierre
Hennion, Claude
author_sort Roperch, Jean-Pierre
collection PubMed
description BACKGROUND: We have recently developed a highly accurate urine-based test, named Urodiag®, associating FGFR3 mutation and DNA methylation assays for recurrence surveillance in patients with low-, intermediate-, and high-risk NMIBC. Previously, the detection of four FGFR3 mutations (G372C, R248C, S249C and Y375C) required amplification steps and PCR products were analyzed by capillary electrophoresis (Allele Specific-PCR, AS-PCR), which was expensive and time-consuming. Here, we present the development a novel ultra-sensitive multiplex PCR assay as called “Mutated Allele Specific Oligonucleotide-PCR (MASO-PCR)”, generating a cost-effective, simple, fast and clinically applicable assay for the detection of FGFR3 mutations in voided urine. METHODS: Comparative clinical performances of MASO-PCR and AS-PCR technologies were performed from 263 urine DNA samples (87 FGFR3 mutated and 176 FGFR3 wild-type). In the development of Urodiag® PCR Kit, we studied the stability and reproducibility of each all-in-one PCR master mix (single reaction mixture including all the necessary PCR components) for MASO-PCR and QM-MSPCR (Quantitative Multiplex Methylation-Specific PCR to co-amplify SEPTIN9, HS3ST2 and SLIT2 methylated genes) assays. RESULTS: Complete concordance (100%) was observed between the MASO-PCR and AS-PCR results. Each PCR master mix displayed excellent reproducibility and stability after 12 months of storage at − 20 °C, with intra-assay standard deviations lower than 0.3 Ct and coefficient of variations (CV) lower than 1%. The limit of detection (LoD) of MASO-PCR was 5% mutant detection in a 95% of wild-type background. The limit of quantification (LoQ) of QM-MSPCR was 10 pg of bisulfite-converted DNA. CONCLUSIONS: We developed and clinically validated the MASO-PCR assay, generating cost-effective, simple, fast and clinically applicable assay for the detection of FGFR3 mutations in urine. We also designed the Urodiag® PCR Kit, which includes the MASO-PCR and QM-MSPCR assays. Adapted to routine clinical laboratory (simplicity, accuracy), the kit will be a great help to urologists for recurrence surveillance in patients at low-, intermediate- and high-risk NMIBC. Reducing the number of unnecessary cystoscopies, it will have extremely beneficial effects for patients (painless) and for the healthcare systems (low cost).
format Online
Article
Text
id pubmed-7247276
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-72472762020-06-01 A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients – Design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC) Roperch, Jean-Pierre Hennion, Claude BMC Med Genet Technical Advance BACKGROUND: We have recently developed a highly accurate urine-based test, named Urodiag®, associating FGFR3 mutation and DNA methylation assays for recurrence surveillance in patients with low-, intermediate-, and high-risk NMIBC. Previously, the detection of four FGFR3 mutations (G372C, R248C, S249C and Y375C) required amplification steps and PCR products were analyzed by capillary electrophoresis (Allele Specific-PCR, AS-PCR), which was expensive and time-consuming. Here, we present the development a novel ultra-sensitive multiplex PCR assay as called “Mutated Allele Specific Oligonucleotide-PCR (MASO-PCR)”, generating a cost-effective, simple, fast and clinically applicable assay for the detection of FGFR3 mutations in voided urine. METHODS: Comparative clinical performances of MASO-PCR and AS-PCR technologies were performed from 263 urine DNA samples (87 FGFR3 mutated and 176 FGFR3 wild-type). In the development of Urodiag® PCR Kit, we studied the stability and reproducibility of each all-in-one PCR master mix (single reaction mixture including all the necessary PCR components) for MASO-PCR and QM-MSPCR (Quantitative Multiplex Methylation-Specific PCR to co-amplify SEPTIN9, HS3ST2 and SLIT2 methylated genes) assays. RESULTS: Complete concordance (100%) was observed between the MASO-PCR and AS-PCR results. Each PCR master mix displayed excellent reproducibility and stability after 12 months of storage at − 20 °C, with intra-assay standard deviations lower than 0.3 Ct and coefficient of variations (CV) lower than 1%. The limit of detection (LoD) of MASO-PCR was 5% mutant detection in a 95% of wild-type background. The limit of quantification (LoQ) of QM-MSPCR was 10 pg of bisulfite-converted DNA. CONCLUSIONS: We developed and clinically validated the MASO-PCR assay, generating cost-effective, simple, fast and clinically applicable assay for the detection of FGFR3 mutations in urine. We also designed the Urodiag® PCR Kit, which includes the MASO-PCR and QM-MSPCR assays. Adapted to routine clinical laboratory (simplicity, accuracy), the kit will be a great help to urologists for recurrence surveillance in patients at low-, intermediate- and high-risk NMIBC. Reducing the number of unnecessary cystoscopies, it will have extremely beneficial effects for patients (painless) and for the healthcare systems (low cost). BioMed Central 2020-05-24 /pmc/articles/PMC7247276/ /pubmed/32448160 http://dx.doi.org/10.1186/s12881-020-01050-w Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Technical Advance
Roperch, Jean-Pierre
Hennion, Claude
A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients – Design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC)
title A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients – Design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC)
title_full A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients – Design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC)
title_fullStr A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients – Design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC)
title_full_unstemmed A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients – Design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC)
title_short A novel ultra-sensitive method for the detection of FGFR3 mutations in urine of bladder cancer patients – Design of the Urodiag® PCR kit for surveillance of patients with non-muscle-invasive bladder cancer (NMIBC)
title_sort novel ultra-sensitive method for the detection of fgfr3 mutations in urine of bladder cancer patients – design of the urodiag® pcr kit for surveillance of patients with non-muscle-invasive bladder cancer (nmibc)
topic Technical Advance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247276/
https://www.ncbi.nlm.nih.gov/pubmed/32448160
http://dx.doi.org/10.1186/s12881-020-01050-w
work_keys_str_mv AT roperchjeanpierre anovelultrasensitivemethodforthedetectionoffgfr3mutationsinurineofbladdercancerpatientsdesignoftheurodiagpcrkitforsurveillanceofpatientswithnonmuscleinvasivebladdercancernmibc
AT hennionclaude anovelultrasensitivemethodforthedetectionoffgfr3mutationsinurineofbladdercancerpatientsdesignoftheurodiagpcrkitforsurveillanceofpatientswithnonmuscleinvasivebladdercancernmibc
AT roperchjeanpierre novelultrasensitivemethodforthedetectionoffgfr3mutationsinurineofbladdercancerpatientsdesignoftheurodiagpcrkitforsurveillanceofpatientswithnonmuscleinvasivebladdercancernmibc
AT hennionclaude novelultrasensitivemethodforthedetectionoffgfr3mutationsinurineofbladdercancerpatientsdesignoftheurodiagpcrkitforsurveillanceofpatientswithnonmuscleinvasivebladdercancernmibc