Cargando…
Detection of Podocin in Human Urine Sediment Samples by Charge Derivatization and LC-MS-MRM Method
Detection of podocytes in urine might serve as a useful diagnostic tool in both primary and secondary glomerular diseases. The utility of podocyturia has been confirmed for both pre-eclampsia and glomerulonephritis. Here, we present a new and sensitive method for qualitative LC-MS-multiple-reaction-...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247335/ https://www.ncbi.nlm.nih.gov/pubmed/32370166 http://dx.doi.org/10.3390/ijms21093225 |
Sumario: | Detection of podocytes in urine might serve as a useful diagnostic tool in both primary and secondary glomerular diseases. The utility of podocyturia has been confirmed for both pre-eclampsia and glomerulonephritis. Here, we present a new and sensitive method for qualitative LC-MS-multiple-reaction-monitoring (MRM) analysis of podocin, serving as a podocyturia biomarker in urine sediments. The following podocin tryptic peptides with the (169)LQTLEIPFHEIVTK(182), (213)AVQFLVQTTMK(223), (240)SIAQDAK(246), and (292)MIAAEAEK(299) sequences were applied as a model. The selective chemical derivatization of the ε amino group of C-terminal lysine residue in tryptic peptides, by 2,4,6-triphenylpyrylium salt (TPP) as a fixed charge tag, was employed to increase the ionization efficiency, in routine ESI-MS analysis. Additionally, the generation of a reporter ion, in the form of a protonated 2,4,6-triphenylpyridinium cation, makes the derivatized peptide analysis in the MRM mode unambiguous. Identification of derivatized and non-derivatized peptides were performed, and the obtained results suggest that the peptide with the (292)MIAAEAEK(299) sequence may serve as a marker of podocyturia. |
---|