Cargando…
Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach
Neurodegenerative disorders (i.e., Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their eti...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247337/ https://www.ncbi.nlm.nih.gov/pubmed/32375302 http://dx.doi.org/10.3390/ijms21093243 |
_version_ | 1783538134651240448 |
---|---|
author | Bordoni, Matteo Scarian, Eveljn Rey, Federica Gagliardi, Stella Carelli, Stephana Pansarasa, Orietta Cereda, Cristina |
author_facet | Bordoni, Matteo Scarian, Eveljn Rey, Federica Gagliardi, Stella Carelli, Stephana Pansarasa, Orietta Cereda, Cristina |
author_sort | Bordoni, Matteo |
collection | PubMed |
description | Neurodegenerative disorders (i.e., Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their etiopathology, the exact cause of these diseases is still unknown and until now, there are only symptomatic treatments. Biomaterials have become important not only for the study of disease pathogenesis, but also for their application in regenerative medicine. The great advantages provided by biomaterials are their ability to mimic the environment of the extracellular matrix and to allow the growth of different types of cells. Biomaterials can be used as supporting material for cell proliferation to be transplanted and as vectors to deliver many active molecules for the treatments of neurodegenerative disorders. In this review, we aim to report the potentiality of biomaterials (i.e., hydrogels, nanoparticles, self-assembling peptides, nanofibers and carbon-based nanomaterials) by analyzing their use in the regeneration of neural and glial cells their role in axon outgrowth. Although further studies are needed for their use in humans, the promising results obtained by several groups leads us to suppose that biomaterials represent a potential therapeutic approach for the treatments of neurodegenerative disorders. |
format | Online Article Text |
id | pubmed-7247337 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72473372020-06-10 Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach Bordoni, Matteo Scarian, Eveljn Rey, Federica Gagliardi, Stella Carelli, Stephana Pansarasa, Orietta Cereda, Cristina Int J Mol Sci Review Neurodegenerative disorders (i.e., Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their etiopathology, the exact cause of these diseases is still unknown and until now, there are only symptomatic treatments. Biomaterials have become important not only for the study of disease pathogenesis, but also for their application in regenerative medicine. The great advantages provided by biomaterials are their ability to mimic the environment of the extracellular matrix and to allow the growth of different types of cells. Biomaterials can be used as supporting material for cell proliferation to be transplanted and as vectors to deliver many active molecules for the treatments of neurodegenerative disorders. In this review, we aim to report the potentiality of biomaterials (i.e., hydrogels, nanoparticles, self-assembling peptides, nanofibers and carbon-based nanomaterials) by analyzing their use in the regeneration of neural and glial cells their role in axon outgrowth. Although further studies are needed for their use in humans, the promising results obtained by several groups leads us to suppose that biomaterials represent a potential therapeutic approach for the treatments of neurodegenerative disorders. MDPI 2020-05-04 /pmc/articles/PMC7247337/ /pubmed/32375302 http://dx.doi.org/10.3390/ijms21093243 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Bordoni, Matteo Scarian, Eveljn Rey, Federica Gagliardi, Stella Carelli, Stephana Pansarasa, Orietta Cereda, Cristina Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach |
title | Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach |
title_full | Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach |
title_fullStr | Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach |
title_full_unstemmed | Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach |
title_short | Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach |
title_sort | biomaterials in neurodegenerative disorders: a promising therapeutic approach |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247337/ https://www.ncbi.nlm.nih.gov/pubmed/32375302 http://dx.doi.org/10.3390/ijms21093243 |
work_keys_str_mv | AT bordonimatteo biomaterialsinneurodegenerativedisordersapromisingtherapeuticapproach AT scarianeveljn biomaterialsinneurodegenerativedisordersapromisingtherapeuticapproach AT reyfederica biomaterialsinneurodegenerativedisordersapromisingtherapeuticapproach AT gagliardistella biomaterialsinneurodegenerativedisordersapromisingtherapeuticapproach AT carellistephana biomaterialsinneurodegenerativedisordersapromisingtherapeuticapproach AT pansarasaorietta biomaterialsinneurodegenerativedisordersapromisingtherapeuticapproach AT ceredacristina biomaterialsinneurodegenerativedisordersapromisingtherapeuticapproach |