Cargando…

Fullerene Negative Ions: Formation and Catalysis

We first explore negative-ion formation in fullerenes C(44) to C(136) through low-energy electron elastic scattering total cross sections calculations using our Regge-pole methodology. Then, the formed negative ions C(44)ˉ to C(136)ˉ are used to investigate the catalysis of water oxidation to peroxi...

Descripción completa

Detalles Bibliográficos
Autores principales: Felfli, Zineb, Suggs, Kelvin, Nicholas, Nantambu, Msezane, Alfred Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247440/
https://www.ncbi.nlm.nih.gov/pubmed/32365766
http://dx.doi.org/10.3390/ijms21093159
Descripción
Sumario:We first explore negative-ion formation in fullerenes C(44) to C(136) through low-energy electron elastic scattering total cross sections calculations using our Regge-pole methodology. Then, the formed negative ions C(44)ˉ to C(136)ˉ are used to investigate the catalysis of water oxidation to peroxide and water synthesis from H(2) and O(2). The exploited fundamental mechanism underlying negative-ion catalysis involves hydrogen bond strength-weakening/breaking in the transition state. Density Functional Theory transition state calculations found C(60)ˉ optimal for both water and peroxide synthesis, C(100)ˉ increases the energy barrier the most, and C(136)ˉ the most effective catalyst in both water synthesis and oxidation to H(2)O(2).