Cargando…
A quantitative and qualitative analysis of the COVID–19 pandemic model
Global efforts around the world are focused on to discuss several health care strategies for minimizing the impact of the new coronavirus (COVID-19) on the community. As it is clear that this virus becomes a public health threat and spreading easily among individuals. Mathematical models with comput...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247488/ https://www.ncbi.nlm.nih.gov/pubmed/32523257 http://dx.doi.org/10.1016/j.chaos.2020.109932 |
_version_ | 1783538165778219008 |
---|---|
author | Khoshnaw, Sarbaz H.A. Shahzad, Muhammad Ali, Mehboob Sultan, Faisal |
author_facet | Khoshnaw, Sarbaz H.A. Shahzad, Muhammad Ali, Mehboob Sultan, Faisal |
author_sort | Khoshnaw, Sarbaz H.A. |
collection | PubMed |
description | Global efforts around the world are focused on to discuss several health care strategies for minimizing the impact of the new coronavirus (COVID-19) on the community. As it is clear that this virus becomes a public health threat and spreading easily among individuals. Mathematical models with computational simulations are effective tools that help global efforts to estimate key transmission parameters and further improvements for controlling this disease. This is an infectious disease and can be modeled as a system of non-linear differential equations with reaction rates. This work reviews and develops some suggested models for the COVID-19 that can address important questions about global health care and suggest important notes. Then, we suggest an updated model that includes a system of differential equations with transmission parameters. Some key computational simulations and sensitivity analysis are investigated. Also, the local sensitivities for each model state concerning the model parameters are computed using three different techniques: non-normalizations, half normalizations, and full normalizations. Results based on the computational simulations show that the model dynamics are significantly changed for different key model parameters. Interestingly, we identify that transition rates between asymptomatic infected with both reported and unreported symptomatic infected individuals are very sensitive parameters concerning model variables in spreading this disease. This helps international efforts to reduce the number of infected individuals from the disease and to prevent the propagation of new coronavirus more widely on the community. Another novelty of this paper is the identification of the critical model parameters, which makes it easy to be used by biologists with less knowledge of mathematical modeling and also facilitates the improvement of the model for future development theoretically and practically. |
format | Online Article Text |
id | pubmed-7247488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72474882020-05-26 A quantitative and qualitative analysis of the COVID–19 pandemic model Khoshnaw, Sarbaz H.A. Shahzad, Muhammad Ali, Mehboob Sultan, Faisal Chaos Solitons Fractals Article Global efforts around the world are focused on to discuss several health care strategies for minimizing the impact of the new coronavirus (COVID-19) on the community. As it is clear that this virus becomes a public health threat and spreading easily among individuals. Mathematical models with computational simulations are effective tools that help global efforts to estimate key transmission parameters and further improvements for controlling this disease. This is an infectious disease and can be modeled as a system of non-linear differential equations with reaction rates. This work reviews and develops some suggested models for the COVID-19 that can address important questions about global health care and suggest important notes. Then, we suggest an updated model that includes a system of differential equations with transmission parameters. Some key computational simulations and sensitivity analysis are investigated. Also, the local sensitivities for each model state concerning the model parameters are computed using three different techniques: non-normalizations, half normalizations, and full normalizations. Results based on the computational simulations show that the model dynamics are significantly changed for different key model parameters. Interestingly, we identify that transition rates between asymptomatic infected with both reported and unreported symptomatic infected individuals are very sensitive parameters concerning model variables in spreading this disease. This helps international efforts to reduce the number of infected individuals from the disease and to prevent the propagation of new coronavirus more widely on the community. Another novelty of this paper is the identification of the critical model parameters, which makes it easy to be used by biologists with less knowledge of mathematical modeling and also facilitates the improvement of the model for future development theoretically and practically. Elsevier Ltd. 2020-09 2020-05-25 /pmc/articles/PMC7247488/ /pubmed/32523257 http://dx.doi.org/10.1016/j.chaos.2020.109932 Text en © 2020 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Khoshnaw, Sarbaz H.A. Shahzad, Muhammad Ali, Mehboob Sultan, Faisal A quantitative and qualitative analysis of the COVID–19 pandemic model |
title | A quantitative and qualitative analysis of the COVID–19 pandemic model |
title_full | A quantitative and qualitative analysis of the COVID–19 pandemic model |
title_fullStr | A quantitative and qualitative analysis of the COVID–19 pandemic model |
title_full_unstemmed | A quantitative and qualitative analysis of the COVID–19 pandemic model |
title_short | A quantitative and qualitative analysis of the COVID–19 pandemic model |
title_sort | quantitative and qualitative analysis of the covid–19 pandemic model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247488/ https://www.ncbi.nlm.nih.gov/pubmed/32523257 http://dx.doi.org/10.1016/j.chaos.2020.109932 |
work_keys_str_mv | AT khoshnawsarbazha aquantitativeandqualitativeanalysisofthecovid19pandemicmodel AT shahzadmuhammad aquantitativeandqualitativeanalysisofthecovid19pandemicmodel AT alimehboob aquantitativeandqualitativeanalysisofthecovid19pandemicmodel AT sultanfaisal aquantitativeandqualitativeanalysisofthecovid19pandemicmodel AT khoshnawsarbazha quantitativeandqualitativeanalysisofthecovid19pandemicmodel AT shahzadmuhammad quantitativeandqualitativeanalysisofthecovid19pandemicmodel AT alimehboob quantitativeandqualitativeanalysisofthecovid19pandemicmodel AT sultanfaisal quantitativeandqualitativeanalysisofthecovid19pandemicmodel |