Cargando…

Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons

Leigh syndrome (LS) is the most frequent infantile mitochondrial disorder (MD) and is characterized by neurodegeneration and astrogliosis in the basal ganglia or the brain stem. At present, there is no cure or treatment for this disease, partly due to scarcity of LS models. Current models generally...

Descripción completa

Detalles Bibliográficos
Autores principales: Galera-Monge, Teresa, Zurita-Díaz, Francisco, Canals, Isaac, Grønning Hansen, Marita, Rufián-Vázquez, Laura, Ehinger, Johannes K., Elmér, Eskil, Martin, Miguel A., Garesse, Rafael, Ahlenius, Henrik, Gallardo, M. Esther
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247580/
https://www.ncbi.nlm.nih.gov/pubmed/32366037
http://dx.doi.org/10.3390/ijms21093191
_version_ 1783538186311434240
author Galera-Monge, Teresa
Zurita-Díaz, Francisco
Canals, Isaac
Grønning Hansen, Marita
Rufián-Vázquez, Laura
Ehinger, Johannes K.
Elmér, Eskil
Martin, Miguel A.
Garesse, Rafael
Ahlenius, Henrik
Gallardo, M. Esther
author_facet Galera-Monge, Teresa
Zurita-Díaz, Francisco
Canals, Isaac
Grønning Hansen, Marita
Rufián-Vázquez, Laura
Ehinger, Johannes K.
Elmér, Eskil
Martin, Miguel A.
Garesse, Rafael
Ahlenius, Henrik
Gallardo, M. Esther
author_sort Galera-Monge, Teresa
collection PubMed
description Leigh syndrome (LS) is the most frequent infantile mitochondrial disorder (MD) and is characterized by neurodegeneration and astrogliosis in the basal ganglia or the brain stem. At present, there is no cure or treatment for this disease, partly due to scarcity of LS models. Current models generally fail to recapitulate important traits of the disease. Therefore, there is an urgent need to develop new human in vitro models. Establishment of induced pluripotent stem cells (iPSCs) followed by differentiation into neurons is a powerful tool to obtain an in vitro model for LS. Here, we describe the generation and characterization of iPSCs, neural stem cells (NSCs) and iPSC-derived neurons harboring the mtDNA mutation m.13513G>A in heteroplasmy. We have performed mitochondrial characterization, analysis of electrophysiological properties and calcium imaging of LS neurons. Here, we show a clearly compromised oxidative phosphorylation (OXPHOS) function in LS patient neurons. This is also the first report of electrophysiological studies performed on iPSC-derived neurons harboring an mtDNA mutation, which revealed that, in spite of having identical electrical properties, diseased neurons manifested mitochondrial dysfunction together with a diminished calcium buffering capacity. This could lead to an overload of cytoplasmic calcium concentration and the consequent cell death observed in patients. Importantly, our results highlight the importance of calcium homeostasis in LS pathology.
format Online
Article
Text
id pubmed-7247580
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72475802020-06-10 Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons Galera-Monge, Teresa Zurita-Díaz, Francisco Canals, Isaac Grønning Hansen, Marita Rufián-Vázquez, Laura Ehinger, Johannes K. Elmér, Eskil Martin, Miguel A. Garesse, Rafael Ahlenius, Henrik Gallardo, M. Esther Int J Mol Sci Article Leigh syndrome (LS) is the most frequent infantile mitochondrial disorder (MD) and is characterized by neurodegeneration and astrogliosis in the basal ganglia or the brain stem. At present, there is no cure or treatment for this disease, partly due to scarcity of LS models. Current models generally fail to recapitulate important traits of the disease. Therefore, there is an urgent need to develop new human in vitro models. Establishment of induced pluripotent stem cells (iPSCs) followed by differentiation into neurons is a powerful tool to obtain an in vitro model for LS. Here, we describe the generation and characterization of iPSCs, neural stem cells (NSCs) and iPSC-derived neurons harboring the mtDNA mutation m.13513G>A in heteroplasmy. We have performed mitochondrial characterization, analysis of electrophysiological properties and calcium imaging of LS neurons. Here, we show a clearly compromised oxidative phosphorylation (OXPHOS) function in LS patient neurons. This is also the first report of electrophysiological studies performed on iPSC-derived neurons harboring an mtDNA mutation, which revealed that, in spite of having identical electrical properties, diseased neurons manifested mitochondrial dysfunction together with a diminished calcium buffering capacity. This could lead to an overload of cytoplasmic calcium concentration and the consequent cell death observed in patients. Importantly, our results highlight the importance of calcium homeostasis in LS pathology. MDPI 2020-04-30 /pmc/articles/PMC7247580/ /pubmed/32366037 http://dx.doi.org/10.3390/ijms21093191 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Galera-Monge, Teresa
Zurita-Díaz, Francisco
Canals, Isaac
Grønning Hansen, Marita
Rufián-Vázquez, Laura
Ehinger, Johannes K.
Elmér, Eskil
Martin, Miguel A.
Garesse, Rafael
Ahlenius, Henrik
Gallardo, M. Esther
Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons
title Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons
title_full Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons
title_fullStr Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons
title_full_unstemmed Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons
title_short Mitochondrial Dysfunction and Calcium Dysregulation in Leigh Syndrome Induced Pluripotent Stem Cell Derived Neurons
title_sort mitochondrial dysfunction and calcium dysregulation in leigh syndrome induced pluripotent stem cell derived neurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247580/
https://www.ncbi.nlm.nih.gov/pubmed/32366037
http://dx.doi.org/10.3390/ijms21093191
work_keys_str_mv AT galeramongeteresa mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT zuritadiazfrancisco mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT canalsisaac mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT grønninghansenmarita mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT rufianvazquezlaura mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT ehingerjohannesk mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT elmereskil mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT martinmiguela mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT garesserafael mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT ahleniushenrik mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons
AT gallardomesther mitochondrialdysfunctionandcalciumdysregulationinleighsyndromeinducedpluripotentstemcellderivedneurons