Cargando…

Laser speckle contrast imaging system using nanosecond pulse laser source

Significance: Nanosecond-pulsed laser has proven to be used to obtain the velocity of blood using the speckle contrast method. Without the scanning time, it has potential for achieving fast two-dimensional blood flow images in a photoacoustic imaging system with the same pulsed laser. Aim: Our study...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yuemei, Wang, Kang, Li, Weitao, Zhang, Huan, Qian, Zhiyu, Liu, Yangyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247735/
https://www.ncbi.nlm.nih.gov/pubmed/32452171
http://dx.doi.org/10.1117/1.JBO.25.5.056005
Descripción
Sumario:Significance: Nanosecond-pulsed laser has proven to be used to obtain the velocity of blood using the speckle contrast method. Without the scanning time, it has potential for achieving fast two-dimensional blood flow images in a photoacoustic imaging system with the same pulsed laser. Aim: Our study aimed to evaluate the qualities of regional cerebral blood flow (rCBF) obtained in a laser speckle contrast imaging (LSCI) system using continuous wave (cw) and nanosecond pulse laser sources. Approach: First, a LSCI system consisting of a cw laser with a wavelength of 632.8 nm and a cw laser/nanosecond pulse laser with a wavelength of 532 nm was developed. This system was used to obtain rCBF images of mouse in vivo with two different laser sources. Results: Continuous wave lasers (532 and 632.8 nm) show different imaging characteristics for rCBF imaging. The rCBF images obtained using 532-nm nanosecond pulse laser showed higher resolution than those using 532-nm cw laser. There was no significant difference in the results using nanosecond pulse laser among various pulse widths or repetition rates. Conclusions: It is proved that a nanosecond pulse laser could be used for LSCI.