Cargando…

Maternal choline and respiratory coronavirus effects on fetal brain development

Prenatal COVID-19 infection is anticipated by the U.S. Centers for Disease Control to affect fetal development similarly to other common respiratory coronaviruses through effects of the maternal inflammatory response on the fetus and placenta. Plasma choline levels were measured at 16 weeks gestatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Freedman, Robert, Hunter, Sharon K., Law, Amanda J., D'Alessandro, Angelo, Noonan, Kathleen, Wyrwa, Anna, Camille Hoffman, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247782/
https://www.ncbi.nlm.nih.gov/pubmed/32474140
http://dx.doi.org/10.1016/j.jpsychires.2020.05.019
Descripción
Sumario:Prenatal COVID-19 infection is anticipated by the U.S. Centers for Disease Control to affect fetal development similarly to other common respiratory coronaviruses through effects of the maternal inflammatory response on the fetus and placenta. Plasma choline levels were measured at 16 weeks gestation in 43 mothers who had contracted common respiratory viruses during the first 6–16 weeks of pregnancy and 53 mothers who had not. When their infants reached 3 months of age, mothers completed the Infant Behavior Questionnaire-Revised (IBQ-R), which assesses their infants’ level of activity (Surgency), their fearfulness and sadness (Negativity), and their ability to maintain attention and bond to their parents and caretakers (Regulation). Infants of mothers who had contracted a moderately severe respiratory virus infection and had higher gestational choline serum levels (≥7.5 mM consistent with U.S. Food and Drug Administration dietary recommendations) had significantly increased development of their ability to maintain attention and to bond with their parents (Regulation), compared to infants whose mothers had contracted an infection but had lower choline levels (<7.5 mM). For infants of mothers with choline levels ≥7.5 μM, there was no effect of viral infection on infant IBQ-R Regulation, compared to infants of mothers who were not infected. Higher choline levels obtained through diet or supplements may protect fetal development and support infant early behavioral development even if the mother contracts a viral infection in early gestation when the brain is first being formed.