Cargando…

Computing the Shortest String and the Edit-Distance for Parsing Expression Languages

A distance between two languages is a useful tool to measure the language similarity, and is closely related to the intersection problem as well as the shortest string problem. A parsing expression grammar (PEG) is an unambiguous grammar such that the choice operator selects the first matching in PE...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheon, Hyunjoon, Han, Yo-Sub
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247870/
http://dx.doi.org/10.1007/978-3-030-48516-0_4
Descripción
Sumario:A distance between two languages is a useful tool to measure the language similarity, and is closely related to the intersection problem as well as the shortest string problem. A parsing expression grammar (PEG) is an unambiguous grammar such that the choice operator selects the first matching in PEG while it can be ambiguous in a context-free grammar. PEGs are also closely related to top-down parsing languages. We consider two problems on parsing expression languages (PELs). One is the r-shortest string problem that decides whether or not a given PEL contains a string of length shorter than r. The other problem is the edit-distance problem of PELs with respect to other language families such as finite languages or regular languages. We show that the r-shortest string problem and the edit-distance problem with respect to finite languages are NEXPTIME-complete, and the edit-distance problem with respect to regular languages is undecidable. In addition, we prove that it is impossible to compute a length bound [Formula: see text] of a PEG G such that L(G) has a string w of length at most [Formula: see text].