Cargando…

Sublinear-Time Language Recognition and Decision by One-Dimensional Cellular Automata

After an apparent hiatus of roughly 30 years, we revisit a seemingly neglected subject in the theory of (one-dimensional) cellular automata: sublinear-time computation. The model considered is that of ACAs, which are language acceptors whose acceptance condition depends on the states of all cells in...

Descripción completa

Detalles Bibliográficos
Autor principal: Modanese, Augusto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247883/
http://dx.doi.org/10.1007/978-3-030-48516-0_19
Descripción
Sumario:After an apparent hiatus of roughly 30 years, we revisit a seemingly neglected subject in the theory of (one-dimensional) cellular automata: sublinear-time computation. The model considered is that of ACAs, which are language acceptors whose acceptance condition depends on the states of all cells in the automaton. We prove a time hierarchy theorem for sublinear-time ACA classes, analyze their intersection with the regular languages, and, finally, establish strict inclusions in the parallel computation classes [Formula: see text] and (uniform) [Formula: see text]. As an addendum, we introduce and investigate the concept of a decider ACA (DACA) as a candidate for a decider counterpart to (acceptor) ACAs. We show the class of languages decidable in constant time by DACAs equals the locally testable languages, and we also determine [Formula: see text] as the (tight) time complexity threshold for DACAs up to which no advantage compared to constant time is possible.