Cargando…

On Normalish Subgroups of the R. Thompson Groups

Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that F is non-amenable if and only if T has a simple reduced [Formula: see text]-algebra. In further investigations into t...

Descripción completa

Detalles Bibliográficos
Autor principal: Bleak, Collin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7247906/
http://dx.doi.org/10.1007/978-3-030-48516-0_3
Descripción
Sumario:Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that F is non-amenable if and only if T has a simple reduced [Formula: see text]-algebra. In further investigations into the structure of [Formula: see text]-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group G. They show that if a group G admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced [Formula: see text]-algebra. Our chief result concerns the R. Thompson groups [Formula: see text]; we show that there is an elementary amenable group [Formula: see text] (where here, [Formula: see text]) with E normalish in V. The proof given uses a natural partial action of the group V on a regular language determined by a synchronizing automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of V with various forms of formal language theory.