Cargando…

Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography

PURPOSE: To compare cardiac magnetic resonance imaging (CMR) with [(15)O]H(2)O positron emission tomography (PET) for quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) in patients with coronary artery disease (CAD). METHODS: Fifty-nine patients with stable CAD...

Descripción completa

Detalles Bibliográficos
Autores principales: Everaars, Henk, van Diemen, Pepijn A., Bom, Michiel J., Schumacher, Stefan P., de Winter, Ruben W., van de Ven, Peter M., Raijmakers, Pieter G., Lammertsma, Adriaan A., Hofman, Mark B. M., van der Geest, Rob J., Götte, Marco J., van Rossum, Albert C., Nijveldt, Robin, Danad, Ibrahim, Driessen, Roel S., Knaapen, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248026/
https://www.ncbi.nlm.nih.gov/pubmed/31822958
http://dx.doi.org/10.1007/s00259-019-04641-9
_version_ 1783538279379894272
author Everaars, Henk
van Diemen, Pepijn A.
Bom, Michiel J.
Schumacher, Stefan P.
de Winter, Ruben W.
van de Ven, Peter M.
Raijmakers, Pieter G.
Lammertsma, Adriaan A.
Hofman, Mark B. M.
van der Geest, Rob J.
Götte, Marco J.
van Rossum, Albert C.
Nijveldt, Robin
Danad, Ibrahim
Driessen, Roel S.
Knaapen, Paul
author_facet Everaars, Henk
van Diemen, Pepijn A.
Bom, Michiel J.
Schumacher, Stefan P.
de Winter, Ruben W.
van de Ven, Peter M.
Raijmakers, Pieter G.
Lammertsma, Adriaan A.
Hofman, Mark B. M.
van der Geest, Rob J.
Götte, Marco J.
van Rossum, Albert C.
Nijveldt, Robin
Danad, Ibrahim
Driessen, Roel S.
Knaapen, Paul
author_sort Everaars, Henk
collection PubMed
description PURPOSE: To compare cardiac magnetic resonance imaging (CMR) with [(15)O]H(2)O positron emission tomography (PET) for quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) in patients with coronary artery disease (CAD). METHODS: Fifty-nine patients with stable CAD underwent CMR and [(15)O]H(2)O PET. The CMR imaging protocol included late gadolinium enhancement to rule out presence of scar tissue and perfusion imaging using a dual sequence, single bolus technique. Absolute MBF was determined for the three main vascular territories at rest and during vasodilator stress. RESULTS: CMR measurements of regional stress MBF and MFR showed only moderate correlation to those obtained using PET (r = 0.39; P < 0.001 for stress MBF and r = 0.36; P < 0.001 for MFR). Bland-Altman analysis revealed a significant bias of 0.2 ± 1.0 mL/min/g for stress MBF and − 0.5 ± 1.2 for MFR. CMR-derived stress MBF and MFR demonstrated area under the curves of respectively 0.72 (95% CI: 0.65 to 0.79) and 0.76 (95% CI: 0.69 to 0.83) and had optimal cutoff values of 2.35 mL/min/g and 2.25 for detecting abnormal myocardial perfusion, defined as [(15)O]H(2)O PET-derived stress MBF ≤ 2.3 mL/min/g and MFR ≤ 2.5. Using these cutoff values, CMR and PET were concordant in 137 (77%) vascular territories for stress MBF and 135 (80%) vascular territories for MFR. CONCLUSION: CMR measurements of stress MBF and MFR showed modest agreement to those obtained with [(15)O]H(2)O PET. Nevertheless, stress MBF and MFR were concordant between CMR and [(15)O]H(2)O PET in 77% and 80% of vascular territories, respectively.
format Online
Article
Text
id pubmed-7248026
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-72480262020-06-03 Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography Everaars, Henk van Diemen, Pepijn A. Bom, Michiel J. Schumacher, Stefan P. de Winter, Ruben W. van de Ven, Peter M. Raijmakers, Pieter G. Lammertsma, Adriaan A. Hofman, Mark B. M. van der Geest, Rob J. Götte, Marco J. van Rossum, Albert C. Nijveldt, Robin Danad, Ibrahim Driessen, Roel S. Knaapen, Paul Eur J Nucl Med Mol Imaging Original Article PURPOSE: To compare cardiac magnetic resonance imaging (CMR) with [(15)O]H(2)O positron emission tomography (PET) for quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) in patients with coronary artery disease (CAD). METHODS: Fifty-nine patients with stable CAD underwent CMR and [(15)O]H(2)O PET. The CMR imaging protocol included late gadolinium enhancement to rule out presence of scar tissue and perfusion imaging using a dual sequence, single bolus technique. Absolute MBF was determined for the three main vascular territories at rest and during vasodilator stress. RESULTS: CMR measurements of regional stress MBF and MFR showed only moderate correlation to those obtained using PET (r = 0.39; P < 0.001 for stress MBF and r = 0.36; P < 0.001 for MFR). Bland-Altman analysis revealed a significant bias of 0.2 ± 1.0 mL/min/g for stress MBF and − 0.5 ± 1.2 for MFR. CMR-derived stress MBF and MFR demonstrated area under the curves of respectively 0.72 (95% CI: 0.65 to 0.79) and 0.76 (95% CI: 0.69 to 0.83) and had optimal cutoff values of 2.35 mL/min/g and 2.25 for detecting abnormal myocardial perfusion, defined as [(15)O]H(2)O PET-derived stress MBF ≤ 2.3 mL/min/g and MFR ≤ 2.5. Using these cutoff values, CMR and PET were concordant in 137 (77%) vascular territories for stress MBF and 135 (80%) vascular territories for MFR. CONCLUSION: CMR measurements of stress MBF and MFR showed modest agreement to those obtained with [(15)O]H(2)O PET. Nevertheless, stress MBF and MFR were concordant between CMR and [(15)O]H(2)O PET in 77% and 80% of vascular territories, respectively. Springer Berlin Heidelberg 2019-12-10 2020 /pmc/articles/PMC7248026/ /pubmed/31822958 http://dx.doi.org/10.1007/s00259-019-04641-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Original Article
Everaars, Henk
van Diemen, Pepijn A.
Bom, Michiel J.
Schumacher, Stefan P.
de Winter, Ruben W.
van de Ven, Peter M.
Raijmakers, Pieter G.
Lammertsma, Adriaan A.
Hofman, Mark B. M.
van der Geest, Rob J.
Götte, Marco J.
van Rossum, Albert C.
Nijveldt, Robin
Danad, Ibrahim
Driessen, Roel S.
Knaapen, Paul
Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography
title Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography
title_full Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography
title_fullStr Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography
title_full_unstemmed Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography
title_short Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography
title_sort comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)o]h(2)o positron emission tomography
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248026/
https://www.ncbi.nlm.nih.gov/pubmed/31822958
http://dx.doi.org/10.1007/s00259-019-04641-9
work_keys_str_mv AT everaarshenk comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT vandiemenpepijna comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT bommichielj comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT schumacherstefanp comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT dewinterrubenw comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT vandevenpeterm comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT raijmakerspieterg comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT lammertsmaadriaana comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT hofmanmarkbm comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT vandergeestrobj comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT gottemarcoj comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT vanrossumalbertc comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT nijveldtrobin comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT danadibrahim comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT driessenroels comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography
AT knaapenpaul comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography