Cargando…
Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography
PURPOSE: To compare cardiac magnetic resonance imaging (CMR) with [(15)O]H(2)O positron emission tomography (PET) for quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) in patients with coronary artery disease (CAD). METHODS: Fifty-nine patients with stable CAD...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248026/ https://www.ncbi.nlm.nih.gov/pubmed/31822958 http://dx.doi.org/10.1007/s00259-019-04641-9 |
_version_ | 1783538279379894272 |
---|---|
author | Everaars, Henk van Diemen, Pepijn A. Bom, Michiel J. Schumacher, Stefan P. de Winter, Ruben W. van de Ven, Peter M. Raijmakers, Pieter G. Lammertsma, Adriaan A. Hofman, Mark B. M. van der Geest, Rob J. Götte, Marco J. van Rossum, Albert C. Nijveldt, Robin Danad, Ibrahim Driessen, Roel S. Knaapen, Paul |
author_facet | Everaars, Henk van Diemen, Pepijn A. Bom, Michiel J. Schumacher, Stefan P. de Winter, Ruben W. van de Ven, Peter M. Raijmakers, Pieter G. Lammertsma, Adriaan A. Hofman, Mark B. M. van der Geest, Rob J. Götte, Marco J. van Rossum, Albert C. Nijveldt, Robin Danad, Ibrahim Driessen, Roel S. Knaapen, Paul |
author_sort | Everaars, Henk |
collection | PubMed |
description | PURPOSE: To compare cardiac magnetic resonance imaging (CMR) with [(15)O]H(2)O positron emission tomography (PET) for quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) in patients with coronary artery disease (CAD). METHODS: Fifty-nine patients with stable CAD underwent CMR and [(15)O]H(2)O PET. The CMR imaging protocol included late gadolinium enhancement to rule out presence of scar tissue and perfusion imaging using a dual sequence, single bolus technique. Absolute MBF was determined for the three main vascular territories at rest and during vasodilator stress. RESULTS: CMR measurements of regional stress MBF and MFR showed only moderate correlation to those obtained using PET (r = 0.39; P < 0.001 for stress MBF and r = 0.36; P < 0.001 for MFR). Bland-Altman analysis revealed a significant bias of 0.2 ± 1.0 mL/min/g for stress MBF and − 0.5 ± 1.2 for MFR. CMR-derived stress MBF and MFR demonstrated area under the curves of respectively 0.72 (95% CI: 0.65 to 0.79) and 0.76 (95% CI: 0.69 to 0.83) and had optimal cutoff values of 2.35 mL/min/g and 2.25 for detecting abnormal myocardial perfusion, defined as [(15)O]H(2)O PET-derived stress MBF ≤ 2.3 mL/min/g and MFR ≤ 2.5. Using these cutoff values, CMR and PET were concordant in 137 (77%) vascular territories for stress MBF and 135 (80%) vascular territories for MFR. CONCLUSION: CMR measurements of stress MBF and MFR showed modest agreement to those obtained with [(15)O]H(2)O PET. Nevertheless, stress MBF and MFR were concordant between CMR and [(15)O]H(2)O PET in 77% and 80% of vascular territories, respectively. |
format | Online Article Text |
id | pubmed-7248026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-72480262020-06-03 Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography Everaars, Henk van Diemen, Pepijn A. Bom, Michiel J. Schumacher, Stefan P. de Winter, Ruben W. van de Ven, Peter M. Raijmakers, Pieter G. Lammertsma, Adriaan A. Hofman, Mark B. M. van der Geest, Rob J. Götte, Marco J. van Rossum, Albert C. Nijveldt, Robin Danad, Ibrahim Driessen, Roel S. Knaapen, Paul Eur J Nucl Med Mol Imaging Original Article PURPOSE: To compare cardiac magnetic resonance imaging (CMR) with [(15)O]H(2)O positron emission tomography (PET) for quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) in patients with coronary artery disease (CAD). METHODS: Fifty-nine patients with stable CAD underwent CMR and [(15)O]H(2)O PET. The CMR imaging protocol included late gadolinium enhancement to rule out presence of scar tissue and perfusion imaging using a dual sequence, single bolus technique. Absolute MBF was determined for the three main vascular territories at rest and during vasodilator stress. RESULTS: CMR measurements of regional stress MBF and MFR showed only moderate correlation to those obtained using PET (r = 0.39; P < 0.001 for stress MBF and r = 0.36; P < 0.001 for MFR). Bland-Altman analysis revealed a significant bias of 0.2 ± 1.0 mL/min/g for stress MBF and − 0.5 ± 1.2 for MFR. CMR-derived stress MBF and MFR demonstrated area under the curves of respectively 0.72 (95% CI: 0.65 to 0.79) and 0.76 (95% CI: 0.69 to 0.83) and had optimal cutoff values of 2.35 mL/min/g and 2.25 for detecting abnormal myocardial perfusion, defined as [(15)O]H(2)O PET-derived stress MBF ≤ 2.3 mL/min/g and MFR ≤ 2.5. Using these cutoff values, CMR and PET were concordant in 137 (77%) vascular territories for stress MBF and 135 (80%) vascular territories for MFR. CONCLUSION: CMR measurements of stress MBF and MFR showed modest agreement to those obtained with [(15)O]H(2)O PET. Nevertheless, stress MBF and MFR were concordant between CMR and [(15)O]H(2)O PET in 77% and 80% of vascular territories, respectively. Springer Berlin Heidelberg 2019-12-10 2020 /pmc/articles/PMC7248026/ /pubmed/31822958 http://dx.doi.org/10.1007/s00259-019-04641-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Article Everaars, Henk van Diemen, Pepijn A. Bom, Michiel J. Schumacher, Stefan P. de Winter, Ruben W. van de Ven, Peter M. Raijmakers, Pieter G. Lammertsma, Adriaan A. Hofman, Mark B. M. van der Geest, Rob J. Götte, Marco J. van Rossum, Albert C. Nijveldt, Robin Danad, Ibrahim Driessen, Roel S. Knaapen, Paul Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography |
title | Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography |
title_full | Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography |
title_fullStr | Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography |
title_full_unstemmed | Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography |
title_short | Comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)O]H(2)O positron emission tomography |
title_sort | comparison between quantitative cardiac magnetic resonance perfusion imaging and [(15)o]h(2)o positron emission tomography |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248026/ https://www.ncbi.nlm.nih.gov/pubmed/31822958 http://dx.doi.org/10.1007/s00259-019-04641-9 |
work_keys_str_mv | AT everaarshenk comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT vandiemenpepijna comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT bommichielj comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT schumacherstefanp comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT dewinterrubenw comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT vandevenpeterm comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT raijmakerspieterg comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT lammertsmaadriaana comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT hofmanmarkbm comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT vandergeestrobj comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT gottemarcoj comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT vanrossumalbertc comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT nijveldtrobin comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT danadibrahim comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT driessenroels comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography AT knaapenpaul comparisonbetweenquantitativecardiacmagneticresonanceperfusionimagingand15oh2opositronemissiontomography |