Cargando…
Tissue-specific and interpretable sub-segmentation of whole tumour burden on CT images by unsupervised fuzzy clustering
BACKGROUND: Cancer typically exhibits genotypic and phenotypic heterogeneity, which can have prognostic significance and influence therapy response. Computed Tomography (CT)-based radiomic approaches calculate quantitative features of tumour heterogeneity at a mesoscopic level, regardless of macrosc...
Autores principales: | Rundo, Leonardo, Beer, Lucian, Ursprung, Stephan, Martin-Gonzalez, Paula, Markowetz, Florian, Brenton, James D., Crispin-Ortuzar, Mireia, Sala, Evis, Woitek, Ramona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248575/ https://www.ncbi.nlm.nih.gov/pubmed/32421652 http://dx.doi.org/10.1016/j.compbiomed.2020.103751 |
Ejemplares similares
-
Integrative radiogenomics for virtual biopsy and treatment monitoring in ovarian cancer
por: Martin-Gonzalez, Paula, et al.
Publicado: (2020) -
Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma
por: Rundo, Leonardo, et al.
Publicado: (2022) -
Ultrasound-guided targeted biopsies of CT-based radiomic tumour habitats: technical development and initial experience in metastatic ovarian cancer
por: Beer, Lucian, et al.
Publicado: (2020) -
Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma—a systematic review and meta-analysis
por: Ursprung, Stephan, et al.
Publicado: (2020) -
Lesion-specific 3D-printed moulds for image-guided tissue multi-sampling of ovarian tumours: A prospective pilot study
por: Delgado-Ortet, Maria, et al.
Publicado: (2023)