Cargando…
Hermetically Packaged Microsensor for Quality Factor-Enhanced Photoacoustic Biosensing
The use of photoacoustics (PA) being a convenient non-invasive analysis tool is widespread in various biomedical fields. Despite significant advances in traditional PA cell systems, detection platforms capable of providing high signal-to-noise ratios and steady operation are yet to be developed for...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248651/ https://www.ncbi.nlm.nih.gov/pubmed/32477865 http://dx.doi.org/10.1016/j.pacs.2020.100189 |
Sumario: | The use of photoacoustics (PA) being a convenient non-invasive analysis tool is widespread in various biomedical fields. Despite significant advances in traditional PA cell systems, detection platforms capable of providing high signal-to-noise ratios and steady operation are yet to be developed for practical micro/nano biosensing applications. Microfabricated transducers offer orders of magnitude higher quality factors and greatly enhanced performance in extremely miniature dimensions that is unattainable with large-scale PA cells. In this work we exploit these attractive attributes of microfabrication technology and describe the first implementation of a vacuum-packaged microscale resonator in photoacoustic biosensing. Steady operation of this functional approach is demonstrated by detecting the minuscule PA signals from the variations of trace amounts of glucose in gelatin-based synthetic tissues. These results demonstrate the potential of the novel approach to broad photoacoustic applications, spanning from micro-biosensing modules to the analysis of solid and liquid analytes of interest in condense mediums. |
---|