Cargando…

Noise-Resistant CECG Using Novel Capacitive Electrodes

For years, capacitive electrocardiogram (CECG) has been known to be susceptible to ambient interference. In light of this, a novel capacitive electrode was developed as an effective way to reduce the interference effect. This was done by simply introducing the capacitive elector in series with a 1 p...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chi-Chun, Chen, Cheng-Wei, Hsieh, Chang-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248718/
https://www.ncbi.nlm.nih.gov/pubmed/32369964
http://dx.doi.org/10.3390/s20092577
Descripción
Sumario:For years, capacitive electrocardiogram (CECG) has been known to be susceptible to ambient interference. In light of this, a novel capacitive electrode was developed as an effective way to reduce the interference effect. This was done by simply introducing the capacitive elector in series with a 1 pF capacitor, and the 60 Hz common mode noise induced by AC power lines was cancelled using a capacitive right leg (CRL) circuit. The proposed electrode did as expected outperform two counterparts in terms of SNR, and particularly gave an up to 99.8% correlation between RRIs extracted from an ECG and a CECG signal, a figure far beyond 52% and 63% using the two counterparts. This capacitive electrode was originally designed for long-term noncontact monitoring of heart rate, and hopefully can be integrated to portable devices for other medical care services in the near future.