Cargando…
Deep Learning-Based Real-Time Auto Classification of Smartphone Measured Bridge Vibration Data
In this study, a simple and customizable convolution neural network framework was used to train a vibration classification model that can be integrated into the measurement application in order to realize accurate and real-time bridge vibration status on mobile platforms. The inputs for the network...
Autores principales: | Shrestha, Ashish, Dang, Ji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248740/ https://www.ncbi.nlm.nih.gov/pubmed/32397510 http://dx.doi.org/10.3390/s20092710 |
Ejemplares similares
-
Real-Time Detection and Classification of Scirtothrips dorsalis on Fruit Crops with Smartphone-Based Deep Learning System: Preliminary Results
por: Niyigena, Gildas, et al.
Publicado: (2023) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping
por: Munquad, Sana, et al.
Publicado: (2023) -
Topology classification with deep learning to improve real-time event selection at the LHC
por: Nguyen, Thong Q., et al.
Publicado: (2018) -
Real-time classification of longitudinal conveyor belt cracks with deep-learning approach
por: Dwivedi, Uttam Kumar, et al.
Publicado: (2023)