Cargando…

Multi-Scale Global Contrast CNN for Salient Object Detection

Salient object detection (SOD) is a fundamental task in computer vision, which attempts to mimic human visual systems that rapidly respond to visual stimuli and locate visually salient objects in various scenes. Perceptual studies have revealed that visual contrast is the most important factor in bo...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Weijia, Li, Xiaohui, Gao, Guangshuai, Chen, Xingyue, Liu, Qingjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248752/
https://www.ncbi.nlm.nih.gov/pubmed/32384766
http://dx.doi.org/10.3390/s20092656
Descripción
Sumario:Salient object detection (SOD) is a fundamental task in computer vision, which attempts to mimic human visual systems that rapidly respond to visual stimuli and locate visually salient objects in various scenes. Perceptual studies have revealed that visual contrast is the most important factor in bottom-up visual attention process. Many of the proposed models predict saliency maps based on the computation of visual contrast between salient regions and backgrounds. In this paper, we design an end-to-end multi-scale global contrast convolutional neural network (CNN) that explicitly learns hierarchical contrast information among global and local features of an image to infer its salient object regions. In contrast to many previous CNN based saliency methods that apply super-pixel segmentation to obtain homogeneous regions and then extract their CNN features before producing saliency maps region-wise, our network is pre-processing free without any additional stages, yet it predicts accurate pixel-wise saliency maps. Extensive experiments demonstrate that the proposed network generates high quality saliency maps that are comparable or even superior to those of state-of-the-art salient object detection architectures.