Cargando…

State Observability through Prior Knowledge: Analysis of the Height Map Prior for Track Cycling †

Inertial navigation systems suffer from unbounded errors in the position and orientation estimates. This drift can be corrected by applying prior knowledge, instead of using exteroceptive sensors. We want to show that the use of prior knowledge can yield full observability of the position and orient...

Descripción completa

Detalles Bibliográficos
Autores principales: Koller, Tom L., Frese, Udo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248790/
https://www.ncbi.nlm.nih.gov/pubmed/32344806
http://dx.doi.org/10.3390/s20092438
Descripción
Sumario:Inertial navigation systems suffer from unbounded errors in the position and orientation estimates. This drift can be corrected by applying prior knowledge, instead of using exteroceptive sensors. We want to show that the use of prior knowledge can yield full observability of the position and orientation. A previous study showed that track cyclers can be tracked drift-free with an IMU as the only sensor and the knowledge that the bike drives on the track. In this paper, we analyze the observability of the pose in the experiment we conducted. Furthermore, we improve the pose estimation of the previous study. The observability is analyzed by testing the weak observability criterion with a Jacobian rank test. The improved estimator is presented and evaluated on a dataset with three 60-round trials (10 km each). The average RMS is 1.08 m and the estimate is drift-free. The observability analysis reveals that the system can gain complete observability in the curves and observability of the orientation on the straight parts of the race track.