Cargando…
Discovering Human Activities from Binary Data in Smart Homes
With the rapid development in sensing technology, data mining, and machine learning fields for human health monitoring, it became possible to enable monitoring of personal motion and vital signs in a manner that minimizes the disruption of an individual’s daily routine and assist individuals with di...
Autores principales: | Eldib, Mohamed, Philips, Wilfried, Aghajan, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248863/ https://www.ncbi.nlm.nih.gov/pubmed/32365545 http://dx.doi.org/10.3390/s20092513 |
Ejemplares similares
-
Human Mobility Monitoring in Very Low Resolution Visual Sensor Network
por: Bo Bo, Nyan, et al.
Publicado: (2014) -
Incremental Learning of Human Activities in Smart Homes
por: Chua, Sook-Ling, et al.
Publicado: (2022) -
Discovering a binary CTCF code with a little help from BORIS
por: Lobanenkov, Victor V., et al.
Publicado: (2017) -
Open-Source Data Collection and Data Sets for Activity Recognition in Smart Homes
por: Köckemann, Uwe, et al.
Publicado: (2020) -
The Lifespan of Human Activity Recognition Systems for Smart Homes
por: Hiremath, Shruthi K., et al.
Publicado: (2023)