Cargando…
Ultrasensitive and Highly Selective Graphene-Based Field-Effect Transistor Biosensor for Anti-Diuretic Hormone Detection
Nephrogenic diabetes insipidus (NDI), which can be congenital or acquired, results from the failure of the kidney to respond to the anti-diuretic hormone (ADH). This will lead to excessive water loss from the body in the form of urine. The kidney, therefore, has a crucial role in maintaining water b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248865/ https://www.ncbi.nlm.nih.gov/pubmed/32384631 http://dx.doi.org/10.3390/s20092642 |
Sumario: | Nephrogenic diabetes insipidus (NDI), which can be congenital or acquired, results from the failure of the kidney to respond to the anti-diuretic hormone (ADH). This will lead to excessive water loss from the body in the form of urine. The kidney, therefore, has a crucial role in maintaining water balance and it is vital to restore this function in an artificial kidney. Herein, an ultrasensitive and highly selective aptameric graphene-based field-effect transistor (GFET) sensor for ADH detection was developed by directly immobilizing ADH-specific aptamer on a surface-modified suspended graphene channel. This direct immobilization of aptamer on the graphene surface is an attempt to mimic the functionality of collecting tube [Formula: see text] receptors in the ADH biosensor. This aptamer was then used as a probe to capture ADH peptide at the sensing area which leads to changes in the concentration of charge carriers in the graphene channel. The biosensor shows a significant increment in the relative change of current ratio from 5.76 to 22.60 with the increase of ADH concentration ranging from 10 ag/mL to 1 pg/mL. The ADH biosensor thus exhibits a sensitivity of 50.00 µA· [Formula: see text] with a limit of detection as low as 3.55 ag/mL. In specificity analysis, the ADH biosensor demonstrated a higher current value which is 338.64 µA for ADH-spiked in phosphate-buffered saline (PBS) and 557.89 µA for ADH-spiked in human serum in comparison with other biomolecules tested. This experimental evidence shows that the ADH biosensor is ultrasensitive and highly selective towards ADH in PBS buffer and ADH-spiked in human serum. |
---|