Cargando…

Theoretical and Experimental Studies on the Signal Propagation in Soil for Wireless Underground Sensor Networks

Wireless Underground Sensor Networks (WUSNs), an important part of Internet of things (IoT), have many promising applications in various scenarios. Signal transmission in natural soil undergoes path loss due to absorption, radiation, reflection and scattering. The variability and dynamic of soil con...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Hongwei, Shi, Jingkang, Wang, Fei, Zhang, Dongming, Zhang, Dongmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248894/
https://www.ncbi.nlm.nih.gov/pubmed/32369984
http://dx.doi.org/10.3390/s20092580
Descripción
Sumario:Wireless Underground Sensor Networks (WUSNs), an important part of Internet of things (IoT), have many promising applications in various scenarios. Signal transmission in natural soil undergoes path loss due to absorption, radiation, reflection and scattering. The variability and dynamic of soil conditions and complexity of signal attenuation behavior make the accurate estimation of signal path loss challenging. Two existing propagation models for predicting path loss are reviewed and compared. Friis model does not consider the reflection loss and is only applicable in the far field region. The Fresnel model, only applicable in the near field region, has not considered the radiating loss and wavelength change loss. A new two stage model is proposed based on the field characteristics of antenna and considers four sources of path loss. The two stage model has a different coefficient m in the near field and far field regions. The far field distance of small size antenna is determined by three criteria: 2 D(2)/λ, 5 D, 1.6 λ in the proposed model. The proposed two stage model has a better agreement with the field experiment data compared to Friis and Fresnel models. The coefficient m is dependent on the soil types for the proposed model in near field region. It is observed from experiment data that the m value is in the range of 0~0.20 for sandy soils and 0.433~0.837 for clayey silt.