Cargando…
Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning
Traffic sign recognition is a classification problem that poses challenges for computer vision and machine learning algorithms. Although both computer vision and machine learning techniques have constantly been improved to solve this problem, the sudden rise in the number of unlabeled traffic signs...
Autores principales: | Nartey, Obed Tettey, Yang, Guowu, Asare, Sarpong Kwadwo, Wu, Jinzhao, Frempong, Lady Nadia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248915/ https://www.ncbi.nlm.nih.gov/pubmed/32397197 http://dx.doi.org/10.3390/s20092684 |
Ejemplares similares
-
A Semisupervised Learning Scheme with Self-Paced Learning for Classifying Breast Cancer Histopathological Images
por: Asare, Sarpong Kwadwo, et al.
Publicado: (2020) -
Rule-Enhanced Active Learning for Semi-Automated Weak Supervision
por: Kartchner, David, et al.
Publicado: (2022) -
Robust weakly supervised learning for COVID-19 recognition using multi-center CT images
por: Ye, Qinghao, et al.
Publicado: (2022) -
Practical Weak Supervision
por: Tok, Wee, et al.
Publicado: (2021) -
Robust identification of molecular phenotypes using semi-supervised learning
por: Roder, Heinrich, et al.
Publicado: (2019)