Cargando…
Implicit Stochastic Gradient Descent Method for Cross-Domain Recommendation System
The previous recommendation system applied the matrix factorization collaborative filtering (MFCF) technique to only single domains. Due to data sparsity, this approach has a limitation in overcoming the cold-start problem. Thus, in this study, we focus on discovering latent features from domains to...
Autores principales: | Vo, Nam D., Hong, Minsung, Jung, Jason J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248973/ https://www.ncbi.nlm.nih.gov/pubmed/32365513 http://dx.doi.org/10.3390/s20092510 |
Ejemplares similares
-
Stochastic gradient descent for optimization for nuclear systems
por: Williams, Austin, et al.
Publicado: (2023) -
A Scalable Bayesian Sampling Method Based on Stochastic Gradient Descent Isotropization
por: Franzese, Giulio, et al.
Publicado: (2021) -
Pangenome graph layout by Path-Guided Stochastic Gradient Descent
por: Heumos, Simon, et al.
Publicado: (2023) -
Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent
por: Wang, Yuanfeng, et al.
Publicado: (2010) -
A Geometric Interpretation of Stochastic Gradient Descent Using Diffusion Metrics
por: Fioresi, Rita, et al.
Publicado: (2020)