Cargando…
Rapidly-Exploring Adaptive Sampling Tree*: A Sample-Based Path-Planning Algorithm for Unmanned Marine Vehicles Information Gathering in Variable Ocean Environments
This research presents a novel sample-based path planning algorithm for adaptive sampling. The goal is to find a near-optimal path for unmanned marine vehicles (UMVs) that maximizes information gathering over a scientific interest area, while satisfying constraints on collision avoidance and pre-spe...
Autores principales: | Xiong, Chengke, Zhou, Hexiong, Lu, Di, Zeng, Zheng, Lian, Lian, Yu, Caoyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249061/ https://www.ncbi.nlm.nih.gov/pubmed/32365553 http://dx.doi.org/10.3390/s20092515 |
Ejemplares similares
-
An Improved Genetic Algorithm for Path-Planning of Unmanned Surface Vehicle
por: Xin, Junfeng, et al.
Publicado: (2019) -
Rapid global path planning algorithm for unmanned surface vehicles in large-scale and multi-island marine environments
por: Wang, Dong, et al.
Publicado: (2021) -
Complex Environment Path Planning for Unmanned Aerial Vehicles
por: Zhang, Jing, et al.
Publicado: (2021) -
Global Path Planning of Unmanned Surface Vehicle Based on Improved A-Star Algorithm
por: Zhang, Huixia, et al.
Publicado: (2023) -
Bio-Inspired Optimization-Based Path Planning Algorithms in Unmanned Aerial Vehicles: A Survey
por: Poudel, Sabitri, et al.
Publicado: (2023)