Cargando…
FilterNet: A Many-to-Many Deep Learning Architecture for Time Series Classification
In this paper, we present and benchmark FilterNet, a flexible deep learning architecture for time series classification tasks, such as activity recognition via multichannel sensor data. It adapts popular convolutional neural network (CNN) and long short-term memory (LSTM) motifs which have excelled...
Autores principales: | Chambers, Robert D., Yoder, Nathanael C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249062/ https://www.ncbi.nlm.nih.gov/pubmed/32354082 http://dx.doi.org/10.3390/s20092498 |
Ejemplares similares
-
Flexible and Efficient Security Framework for Many-to-Many Communication in a Publish/Subscribe Architecture
por: Van Glabbeek, Roald, et al.
Publicado: (2022) -
The many faces of modern architecture : building in Germany between the World Wars
Publicado: (1994) -
Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy
por: Berijanian, Maryam, et al.
Publicado: (2023) -
The many faces of endometriosis
por: de Souza, Marcelo Luis Pereira, et al.
Publicado: (2022) -
How many holes is too many? A prototype tool for estimating mosquito entry risk into damaged bed nets
por: Sutcliffe, James, et al.
Publicado: (2017)