Cargando…
Combined Machine Learning and Molecular Modelling Workflow for the Recognition of Potentially Novel Fungicides
Novel machine learning and molecular modelling filtering procedures for drug repurposing have been carried out for the recognition of the novel fungicide targets of Cyp51 and Erg2. Classification and regression approaches on molecular descriptors have been performed using stepwise multilinear regres...
Autores principales: | Jović, Ozren, Šmuc, Tomislav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249108/ https://www.ncbi.nlm.nih.gov/pubmed/32397151 http://dx.doi.org/10.3390/molecules25092198 |
Ejemplares similares
-
Search for Novel Lead Inhibitors of Yeast Cytochrome bc1, from Drugbank and COCONUT
por: Jović, Ozren, et al.
Publicado: (2021) -
In Vitro Confirmation of Siramesine as a Novel Antifungal Agent with In Silico Lead Proposals of Structurally Related Antifungals
por: Vlainić, Josipa, et al.
Publicado: (2021) -
Comprehensive machine learning based study of the chemical space of herbicides
por: Oršolić, Davor, et al.
Publicado: (2021) -
Identification of Fungicide Combinations Targeting Plasmopara viticola and Botrytis cinerea Fungicide Resistance Using Machine Learning
por: Zhang, Junrui, et al.
Publicado: (2023) -
Coupling machine learning and epidemiological modelling to characterise optimal fungicide doses when fungicide resistance is partial or quantitative
por: Taylor, Nick P., et al.
Publicado: (2023)