Cargando…
Deep Compressed Sensing for Learning Submodular Functions
The AI community has been paying attention to submodular functions due to their various applications (e.g., target search and 3D mapping). Learning submodular functions is a challenge since the number of a function’s outcomes of N sets is [Formula: see text]. The state-of-the-art approach is based o...
Autores principales: | Tsai, Yu-Chung, Tseng, Kuo-Shih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249116/ https://www.ncbi.nlm.nih.gov/pubmed/32370173 http://dx.doi.org/10.3390/s20092591 |
Ejemplares similares
-
Submodular functions and optimization
por: Fujishige, Satoru
Publicado: (2005) -
Submodular functions and optimization
por: Fujishige, Satoru
Publicado: (1991) -
Learning with submodular functions: a convex optimization perspective
por: Bach, Francis
Publicado: (2013) -
Ranking with submodular functions on a budget
por: Zhang, Guangyi, et al.
Publicado: (2022) -
Submodularity in dynamics and control of networked systems
por: Clark, Andrew, et al.
Publicado: (2016)