Cargando…
An Approach towards Increasing Prediction Accuracy for the Recovery of Missing IoT Data based on the GRNN-SGTM Ensemble †
The purpose of this paper is to improve the accuracy of solving prediction tasks of the missing IoT data recovery. To achieve this, the authors have developed a new ensemble of neural network tools. It consists of two successive General Regression Neural Network (GRNN) networks and one neural-like s...
Autores principales: | Tkachenko, Roman, Izonin, Ivan, Kryvinska, Natalia, Dronyuk, Ivanna, Zub, Khrystyna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249176/ https://www.ncbi.nlm.nih.gov/pubmed/32375400 http://dx.doi.org/10.3390/s20092625 |
Ejemplares similares
-
SDN-Enabled IoT Anomaly Detection Using Ensemble Learning
por: Tsogbaatar, Enkhtur, et al.
Publicado: (2020) -
A Deep Intelligent Attack Detection Framework for Fog-Based IoT Systems
por: Gudla, Surya Pavan Kumar, et al.
Publicado: (2022) -
A Deep Learning Based Data Recovery Approach for Missing and Erroneous Data of IoT Nodes
por: Vedavalli, Perigisetty, et al.
Publicado: (2022) -
Comparison of ARIMA, ES, GRNN and ARIMA–GRNN hybrid models to forecast the second wave of COVID-19 in India and the United States
por: Wang, Gang, et al.
Publicado: (2021) -
Attack-Aware IoT Network Traffic Routing Leveraging Ensemble Learning
por: Abu Al-Haija, Qasem, et al.
Publicado: (2021)