Cargando…
Improved Pixel-Level Pavement-Defect Segmentation Using a Deep Autoencoder
Convolutional neural networks perform impressively in complicated computer-vision image-segmentation tasks. Vision-based systems surpass humans in speed and accuracy in quality inspection tasks. Moreover, the maintenance of big infrastructures, such as roads, bridges, or buildings, is tedious and ti...
Autores principales: | Augustauskas, Rytis, Lipnickas, Arūnas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249178/ https://www.ncbi.nlm.nih.gov/pubmed/32365925 http://dx.doi.org/10.3390/s20092557 |
Ejemplares similares
-
Segmentation of Drilled Holes in Texture Wooden Furniture Panels Using Deep Neural Network
por: Augustauskas, Rytis, et al.
Publicado: (2021) -
Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module
por: Qiao, Wenting, et al.
Publicado: (2021) -
RUC-Net: A Residual-Unet-Based Convolutional Neural Network for Pixel-Level Pavement Crack Segmentation
por: Yu, Gui, et al.
Publicado: (2022) -
Deep-Learning-Based Estimation of the Spatial QRS-T Angle from Reduced-Lead ECGs
por: Santos Rodrigues, Ana, et al.
Publicado: (2022) -
Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module
por: Sae-ang, Bee-ing, et al.
Publicado: (2022)