Cargando…
A Strictly Unsupervised Deep Learning Method for HEp-2 Cell Image Classification
Classifying the images that portray the Human Epithelial cells of type 2 (HEp-2) represents one of the most important steps in the diagnosis procedure of autoimmune diseases. Performing this classification manually represents an extremely complicated task due to the heterogeneity of these cellular i...
Autores principales: | Vununu, Caleb, Lee, Suk-Hwan, Kwon, Ki-Ryong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249201/ https://www.ncbi.nlm.nih.gov/pubmed/32397567 http://dx.doi.org/10.3390/s20092717 |
Ejemplares similares
-
A Classification Method for the Cellular Images Based on Active Learning and Cross-Modal Transfer Learning
por: Vununu, Caleb, et al.
Publicado: (2021) -
A Deep Feature Learning Method for Drill Bits Monitoring Using the Spectral Analysis of the Acoustic Signals
por: Vununu, Caleb, et al.
Publicado: (2018) -
A Deep Learning Method for 3D Object Classification and Retrieval Using the Global Point Signature Plus and Deep Wide Residual Network
por: Hoang, Long, et al.
Publicado: (2021) -
Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images †
por: Cohen, Ido, et al.
Publicado: (2019) -
Cell Type Classification and Unsupervised Morphological Phenotyping From Low-Resolution Images Using Deep Learning
por: Yao, Kai, et al.
Publicado: (2019)