Cargando…
Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment
Composites of tetracycline (Tc)-imprinted polymethacrylates and quantum dots have been coated on chemically pretreated polyimide substrates (PIs) as fluorescent sensors. In this study, PIs were pretreated by capacitively coupled plasma (CCP) before coating the same composites on them. For the first...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249214/ https://www.ncbi.nlm.nih.gov/pubmed/32397682 http://dx.doi.org/10.3390/s20092723 |
_version_ | 1783538552675500032 |
---|---|
author | Ke, Ching-Bin Chen, Jian-Lian |
author_facet | Ke, Ching-Bin Chen, Jian-Lian |
author_sort | Ke, Ching-Bin |
collection | PubMed |
description | Composites of tetracycline (Tc)-imprinted polymethacrylates and quantum dots have been coated on chemically pretreated polyimide substrates (PIs) as fluorescent sensors. In this study, PIs were pretreated by capacitively coupled plasma (CCP) before coating the same composites on them. For the first time, to fabricate sensors by plasma modification of PIs, the CCP conditions, including plasma gas, flow rate, radio frequency generation power, and duration time, the fabrication details, including coating, baking, and stripping steps, and the sample loading process were optimized to perform a linear decrease in fluorescent intensity with Tc concentrations in the range of 5.0–3000 μM (R(2) = 0.9995) with a limit of detection of 0.2 μM (S/N = 3, relative standard deviation (RSD) = 2.2%). The selectivity of the stripped PIs was evaluated by the imprinting factors (IFs) for Tc (IF = 7.2), other Tc analogues (IF = 3.4–5.3), and steroids (IF ≈ 1) and by the recoveries of 5.0 μM Tc from bovine serum albumin at 300 μg∙mL(−1) (98%, RSD = 3.2%), fetal bovine serum at 1.5 ppt (98%, RSD = 2.8%), and liquid milk (94.5%, RSD = 5.3%). The superiority of the present plasma-treated-based sensor over the previous chemically-treated one in fabrication efficiency and detection effectiveness was clear. |
format | Online Article Text |
id | pubmed-7249214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72492142020-06-10 Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment Ke, Ching-Bin Chen, Jian-Lian Sensors (Basel) Article Composites of tetracycline (Tc)-imprinted polymethacrylates and quantum dots have been coated on chemically pretreated polyimide substrates (PIs) as fluorescent sensors. In this study, PIs were pretreated by capacitively coupled plasma (CCP) before coating the same composites on them. For the first time, to fabricate sensors by plasma modification of PIs, the CCP conditions, including plasma gas, flow rate, radio frequency generation power, and duration time, the fabrication details, including coating, baking, and stripping steps, and the sample loading process were optimized to perform a linear decrease in fluorescent intensity with Tc concentrations in the range of 5.0–3000 μM (R(2) = 0.9995) with a limit of detection of 0.2 μM (S/N = 3, relative standard deviation (RSD) = 2.2%). The selectivity of the stripped PIs was evaluated by the imprinting factors (IFs) for Tc (IF = 7.2), other Tc analogues (IF = 3.4–5.3), and steroids (IF ≈ 1) and by the recoveries of 5.0 μM Tc from bovine serum albumin at 300 μg∙mL(−1) (98%, RSD = 3.2%), fetal bovine serum at 1.5 ppt (98%, RSD = 2.8%), and liquid milk (94.5%, RSD = 5.3%). The superiority of the present plasma-treated-based sensor over the previous chemically-treated one in fabrication efficiency and detection effectiveness was clear. MDPI 2020-05-10 /pmc/articles/PMC7249214/ /pubmed/32397682 http://dx.doi.org/10.3390/s20092723 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ke, Ching-Bin Chen, Jian-Lian Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment |
title | Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment |
title_full | Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment |
title_fullStr | Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment |
title_full_unstemmed | Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment |
title_short | Effective and Efficient Pretreatment of Polyimide Substrates by Capacitively Coupled Plasma for Coating the Composites of Tetracycline-Imprinted Polymers and Quantum Dots: Comparison with Chemical Pretreatment |
title_sort | effective and efficient pretreatment of polyimide substrates by capacitively coupled plasma for coating the composites of tetracycline-imprinted polymers and quantum dots: comparison with chemical pretreatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249214/ https://www.ncbi.nlm.nih.gov/pubmed/32397682 http://dx.doi.org/10.3390/s20092723 |
work_keys_str_mv | AT kechingbin effectiveandefficientpretreatmentofpolyimidesubstratesbycapacitivelycoupledplasmaforcoatingthecompositesoftetracyclineimprintedpolymersandquantumdotscomparisonwithchemicalpretreatment AT chenjianlian effectiveandefficientpretreatmentofpolyimidesubstratesbycapacitivelycoupledplasmaforcoatingthecompositesoftetracyclineimprintedpolymersandquantumdotscomparisonwithchemicalpretreatment |