Cargando…
Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial
BACKGROUND: While well-characterised on its molecular base, non-small cell lung cancer (NSCLC) and its interaction with local microbiota remains scarcely explored. Moreover, current studies vary in source of lung microbiota, from bronchoalveolar lavage fluid (BAL) to tissue, introducing potentially...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249392/ https://www.ncbi.nlm.nih.gov/pubmed/32450847 http://dx.doi.org/10.1186/s12931-020-01392-2 |
_version_ | 1783538583452254208 |
---|---|
author | Bingula, Rea Filaire, Edith Molnar, Ioana Delmas, Eve Berthon, Jean-Yves Vasson, Marie-Paule Bernalier-Donadille, Annick Filaire, Marc |
author_facet | Bingula, Rea Filaire, Edith Molnar, Ioana Delmas, Eve Berthon, Jean-Yves Vasson, Marie-Paule Bernalier-Donadille, Annick Filaire, Marc |
author_sort | Bingula, Rea |
collection | PubMed |
description | BACKGROUND: While well-characterised on its molecular base, non-small cell lung cancer (NSCLC) and its interaction with local microbiota remains scarcely explored. Moreover, current studies vary in source of lung microbiota, from bronchoalveolar lavage fluid (BAL) to tissue, introducing potentially differing results. Therefore, the objective of this study was to provide detailed characterisation of the oral and multi-source lung microbiota of direct interest in lung cancer research. Since lung tumours in lower lobes (LL) have been associated with decreased survival, characteristics of the microbiota in upper (UL) and lower tumour lobes have also been examined. METHODS: Using 16S rRNA gene sequencing technology, we analysed microbiota in saliva, BAL (obtained directly on excised lobe), non-malignant, peritumoural and tumour tissue from 18 NSCLC patients eligible for surgical treatment. Detailed taxonomy, diversity and core members were provided for each microbiota, with analysis of differential abundance on all taxonomical levels (zero-inflated binomial general linear model with Benjamini-Hochberg correction), between samples and lobe locations. RESULTS: Diversity and differential abundance analysis showed clear separation of oral and lung microbiota, but more importantly, of BAL and lung tissue microbiota. Phylum Proteobacteria dominated tissue samples, while Firmicutes was more abundant in BAL and saliva (with class Clostridia and Bacilli, respectively). However, all samples showed increased abundance of phylum Firmicutes in LL, with decrease in Proteobacteria. Also, clades Actinobacteria and Flavobacteriia showed inverse abundance between BAL and extratumoural tissues depending on the lobe location. While tumour microbiota seemed the least affected by location, peritumoural tissue showed the highest susceptibility with markedly increased similarity to BAL microbiota in UL. Differences between the three lung tissues were however very limited. CONCLUSIONS: Our results confirm that BAL harbours unique lung microbiota and emphasise the importance of the sample choice for lung microbiota analysis. Further, limited differences between the tissues indicate that different local tumour-related factors, such as tumour type, stage or associated immunity, might be the ones responsible for microbiota-shaping effect. Finally, the “shift” towards Firmicutes in LL might be a sign of increased pathogenicity, as suggested in similar malignancies, and connected to worse prognosis of the LL tumours. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT03068663. Registered February 27, 2017. |
format | Online Article Text |
id | pubmed-7249392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-72493922020-06-04 Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial Bingula, Rea Filaire, Edith Molnar, Ioana Delmas, Eve Berthon, Jean-Yves Vasson, Marie-Paule Bernalier-Donadille, Annick Filaire, Marc Respir Res Research BACKGROUND: While well-characterised on its molecular base, non-small cell lung cancer (NSCLC) and its interaction with local microbiota remains scarcely explored. Moreover, current studies vary in source of lung microbiota, from bronchoalveolar lavage fluid (BAL) to tissue, introducing potentially differing results. Therefore, the objective of this study was to provide detailed characterisation of the oral and multi-source lung microbiota of direct interest in lung cancer research. Since lung tumours in lower lobes (LL) have been associated with decreased survival, characteristics of the microbiota in upper (UL) and lower tumour lobes have also been examined. METHODS: Using 16S rRNA gene sequencing technology, we analysed microbiota in saliva, BAL (obtained directly on excised lobe), non-malignant, peritumoural and tumour tissue from 18 NSCLC patients eligible for surgical treatment. Detailed taxonomy, diversity and core members were provided for each microbiota, with analysis of differential abundance on all taxonomical levels (zero-inflated binomial general linear model with Benjamini-Hochberg correction), between samples and lobe locations. RESULTS: Diversity and differential abundance analysis showed clear separation of oral and lung microbiota, but more importantly, of BAL and lung tissue microbiota. Phylum Proteobacteria dominated tissue samples, while Firmicutes was more abundant in BAL and saliva (with class Clostridia and Bacilli, respectively). However, all samples showed increased abundance of phylum Firmicutes in LL, with decrease in Proteobacteria. Also, clades Actinobacteria and Flavobacteriia showed inverse abundance between BAL and extratumoural tissues depending on the lobe location. While tumour microbiota seemed the least affected by location, peritumoural tissue showed the highest susceptibility with markedly increased similarity to BAL microbiota in UL. Differences between the three lung tissues were however very limited. CONCLUSIONS: Our results confirm that BAL harbours unique lung microbiota and emphasise the importance of the sample choice for lung microbiota analysis. Further, limited differences between the tissues indicate that different local tumour-related factors, such as tumour type, stage or associated immunity, might be the ones responsible for microbiota-shaping effect. Finally, the “shift” towards Firmicutes in LL might be a sign of increased pathogenicity, as suggested in similar malignancies, and connected to worse prognosis of the LL tumours. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT03068663. Registered February 27, 2017. BioMed Central 2020-05-25 2020 /pmc/articles/PMC7249392/ /pubmed/32450847 http://dx.doi.org/10.1186/s12931-020-01392-2 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Bingula, Rea Filaire, Edith Molnar, Ioana Delmas, Eve Berthon, Jean-Yves Vasson, Marie-Paule Bernalier-Donadille, Annick Filaire, Marc Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial |
title | Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial |
title_full | Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial |
title_fullStr | Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial |
title_full_unstemmed | Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial |
title_short | Characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial |
title_sort | characterisation of microbiota in saliva, bronchoalveolar lavage fluid, non-malignant, peritumoural and tumour tissue in non-small cell lung cancer patients: a cross-sectional clinical trial |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249392/ https://www.ncbi.nlm.nih.gov/pubmed/32450847 http://dx.doi.org/10.1186/s12931-020-01392-2 |
work_keys_str_mv | AT bingularea characterisationofmicrobiotainsalivabronchoalveolarlavagefluidnonmalignantperitumouralandtumourtissueinnonsmallcelllungcancerpatientsacrosssectionalclinicaltrial AT filaireedith characterisationofmicrobiotainsalivabronchoalveolarlavagefluidnonmalignantperitumouralandtumourtissueinnonsmallcelllungcancerpatientsacrosssectionalclinicaltrial AT molnarioana characterisationofmicrobiotainsalivabronchoalveolarlavagefluidnonmalignantperitumouralandtumourtissueinnonsmallcelllungcancerpatientsacrosssectionalclinicaltrial AT delmaseve characterisationofmicrobiotainsalivabronchoalveolarlavagefluidnonmalignantperitumouralandtumourtissueinnonsmallcelllungcancerpatientsacrosssectionalclinicaltrial AT berthonjeanyves characterisationofmicrobiotainsalivabronchoalveolarlavagefluidnonmalignantperitumouralandtumourtissueinnonsmallcelllungcancerpatientsacrosssectionalclinicaltrial AT vassonmariepaule characterisationofmicrobiotainsalivabronchoalveolarlavagefluidnonmalignantperitumouralandtumourtissueinnonsmallcelllungcancerpatientsacrosssectionalclinicaltrial AT bernalierdonadilleannick characterisationofmicrobiotainsalivabronchoalveolarlavagefluidnonmalignantperitumouralandtumourtissueinnonsmallcelllungcancerpatientsacrosssectionalclinicaltrial AT filairemarc characterisationofmicrobiotainsalivabronchoalveolarlavagefluidnonmalignantperitumouralandtumourtissueinnonsmallcelllungcancerpatientsacrosssectionalclinicaltrial |