Cargando…
Nonlinear Dose–Response Modeling of High-Throughput Screening Data Using an Evolutionary Algorithm
Nonlinear dose–response relationships exist extensively in the cellular, biochemical, and physiologic processes that are affected by varying levels of biological, chemical, or radiation stress. Modeling such responses is a crucial component of toxicity testing and chemical screening. Traditional mod...
Autores principales: | Ma, Jun, Bair, Eric, Motsinger-Reif, Alison |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7249578/ https://www.ncbi.nlm.nih.gov/pubmed/32547333 http://dx.doi.org/10.1177/1559325820926734 |
Ejemplares similares
-
Evaluation of calling algorithms for array-CGH
por: Roy, Siddharth, et al.
Publicado: (2013) -
An investigation of gene-gene interactions in dose-response studies with Bayesian nonparametrics
por: Beam, Andrew L, et al.
Publicado: (2015) -
A Grid Algorithm for High Throughput Fitting of Dose-Response Curve Data
por: Wang, Yuhong, et al.
Publicado: (2010) -
High-throughput screening and genome-wide analyses of 44 anticancer drugs in the 1000 Genomes cell lines reveals an association of the NQO1 gene with the response of multiple anticancer drugs
por: Akhtari, Farida S., et al.
Publicado: (2021) -
Prediction of synergistic drug combinations using PCA-initialized deep learning
por: Ma, Jun, et al.
Publicado: (2021)