Cargando…
Unsupervised Bootstrapping of Active Learning for Entity Resolution
Entity resolution is one of the central challenges when integrating data from large numbers of data sources. Active learning for entity resolution aims to learn high-quality matching models while minimizing the human labeling effort by selecting only the most informative record pairs for labeling. M...
Autores principales: | Primpeli, Anna, Bizer, Christian, Keuper, Margret |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250605/ http://dx.doi.org/10.1007/978-3-030-49461-2_13 |
Ejemplares similares
-
Enhancing unsupervised medical entity linking with multi-instance learning
por: Yan, Cheng, et al.
Publicado: (2021) -
Learning Bootstrap
por: Shenoy, Aravind, et al.
Publicado: (2014) -
Chemical named entity recognition in patents by domain knowledge and unsupervised feature learning
por: Zhang, Yaoyun, et al.
Publicado: (2016) -
Deep Unsupervised Fusion Learning for Hyperspectral Image Super Resolution
por: Liu, Zhe, et al.
Publicado: (2021) -
Bootstrap
por: Spurlock, Jake
Publicado: (2013)