Cargando…
GEval: A Modular and Extensible Evaluation Framework for Graph Embedding Techniques
While RDF data are graph shaped by nature, most traditional Machine Learning (ML) algorithms expect data in a vector form. To transform graph elements to vectors, several graph embedding approaches have been proposed. Comparing these approaches is interesting for 1) developers of new embedding techn...
Autores principales: | Pellegrino, Maria Angela, Altabba, Abdulrahman, Garofalo, Martina, Ristoski, Petar, Cochez, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250612/ http://dx.doi.org/10.1007/978-3-030-49461-2_33 |
Ejemplares similares
-
gEVAL — a web-based browser for evaluating genome assemblies
por: Chow, William, et al.
Publicado: (2016) -
Exploiting semantic web knowledge graphs in data mining
por: Ristoski, P
Publicado: (2019) -
A type-augmented knowledge graph embedding framework for knowledge graph completion
por: He, Peng, et al.
Publicado: (2023) -
QueDI: From Knowledge Graph Querying to Data Visualization
por: De Donato, Renato, et al.
Publicado: (2020) -
Embedded graphs
por: Lando, S, et al.
Publicado: (2001)