Cargando…

Entity Extraction from Wikipedia List Pages

When it comes to factual knowledge about a wide range of domains, Wikipedia is often the prime source of information on the web. DBpedia and YAGO, as large cross-domain knowledge graphs, encode a subset of that knowledge by creating an entity for each page in Wikipedia, and connecting them through e...

Descripción completa

Detalles Bibliográficos
Autores principales: Heist, Nicolas, Paulheim, Heiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250619/
http://dx.doi.org/10.1007/978-3-030-49461-2_19
Descripción
Sumario:When it comes to factual knowledge about a wide range of domains, Wikipedia is often the prime source of information on the web. DBpedia and YAGO, as large cross-domain knowledge graphs, encode a subset of that knowledge by creating an entity for each page in Wikipedia, and connecting them through edges. It is well known, however, that Wikipedia-based knowledge graphs are far from complete. Especially, as Wikipedia’s policies permit pages about subjects only if they have a certain popularity, such graphs tend to lack information about less well-known entities. Information about these entities is oftentimes available in the encyclopedia, but not represented as an individual page. In this paper, we present a two-phased approach for the extraction of entities from Wikipedia’s list pages, which have proven to serve as a valuable source of information. In the first phase, we build a large taxonomy from categories and list pages with DBpedia as a backbone. With distant supervision, we extract training data for the identification of new entities in list pages that we use in the second phase to train a classification model. With this approach we extract over 700k new entities and extend DBpedia with 7.5M new type statements and 3.8M new facts of high precision.