Cargando…
Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling
RDF dataset profiles provide a formal representation of a dataset’s characteristics (features). These profiles may cover various aspects of the data represented in the dataset as well as statistical descriptors of the data distribution. In this work, we focus on the characteristic sets profile featu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250620/ http://dx.doi.org/10.1007/978-3-030-49461-2_10 |
_version_ | 1783538798235222016 |
---|---|
author | Heling, Lars Acosta, Maribel |
author_facet | Heling, Lars Acosta, Maribel |
author_sort | Heling, Lars |
collection | PubMed |
description | RDF dataset profiles provide a formal representation of a dataset’s characteristics (features). These profiles may cover various aspects of the data represented in the dataset as well as statistical descriptors of the data distribution. In this work, we focus on the characteristic sets profile feature summarizing the characteristic sets contained in an RDF graph. As this type of feature provides detailed information on both the structure and semantics of RDF graphs, they can be very beneficial in query optimization. However, in decentralized query processing, computing them is challenging as it is difficult and/or costly to access and process all datasets. To overcome this shortcoming, we propose the concept of a profile feature estimation. We present sampling methods and projection functions to generate estimations which aim to be as similar as possible to the original characteristic sets profile feature. In our evaluation, we investigate the feasibility of the proposed methods on four RDF graphs. Our results show that samples containing [Formula: see text] of the entities in the graph allow for good estimations and may be used by downstream tasks such as query plan optimization in decentralized querying. |
format | Online Article Text |
id | pubmed-7250620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-72506202020-05-27 Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling Heling, Lars Acosta, Maribel The Semantic Web Article RDF dataset profiles provide a formal representation of a dataset’s characteristics (features). These profiles may cover various aspects of the data represented in the dataset as well as statistical descriptors of the data distribution. In this work, we focus on the characteristic sets profile feature summarizing the characteristic sets contained in an RDF graph. As this type of feature provides detailed information on both the structure and semantics of RDF graphs, they can be very beneficial in query optimization. However, in decentralized query processing, computing them is challenging as it is difficult and/or costly to access and process all datasets. To overcome this shortcoming, we propose the concept of a profile feature estimation. We present sampling methods and projection functions to generate estimations which aim to be as similar as possible to the original characteristic sets profile feature. In our evaluation, we investigate the feasibility of the proposed methods on four RDF graphs. Our results show that samples containing [Formula: see text] of the entities in the graph allow for good estimations and may be used by downstream tasks such as query plan optimization in decentralized querying. 2020-05-07 /pmc/articles/PMC7250620/ http://dx.doi.org/10.1007/978-3-030-49461-2_10 Text en © Springer Nature Switzerland AG 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Heling, Lars Acosta, Maribel Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling |
title | Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling |
title_full | Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling |
title_fullStr | Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling |
title_full_unstemmed | Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling |
title_short | Estimating Characteristic Sets for RDF Dataset Profiles Based on Sampling |
title_sort | estimating characteristic sets for rdf dataset profiles based on sampling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250620/ http://dx.doi.org/10.1007/978-3-030-49461-2_10 |
work_keys_str_mv | AT helinglars estimatingcharacteristicsetsforrdfdatasetprofilesbasedonsampling AT acostamaribel estimatingcharacteristicsetsforrdfdatasetprofilesbasedonsampling |