Cargando…
Characterizing physiological and symptomatic variation in menstrual cycles using self-tracked mobile-health data
The menstrual cycle is a key indicator of overall health for women of reproductive age. Previously, menstruation was primarily studied through survey results; however, as menstrual tracking mobile apps become more widely adopted, they provide an increasingly large, content-rich source of menstrual h...
Autores principales: | Li, Kathy, Urteaga, Iñigo, Wiggins, Chris H., Druet, Anna, Shea, Amanda, Vitzthum, Virginia J., Elhadad, Noémie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250828/ https://www.ncbi.nlm.nih.gov/pubmed/32509976 http://dx.doi.org/10.1038/s41746-020-0269-8 |
Ejemplares similares
-
A predictive model for next cycle start date that accounts for adherence in menstrual self-tracking
por: Li, Kathy, et al.
Publicado: (2021) -
The messiness of the menstruator: assessing personas and functionalities of
menstrual tracking apps
por: Pichon, Adrienne, et al.
Publicado: (2021) -
More than blood: app-tracking reveals variability in heavy menstrual bleeding construct
por: Shea, Amanda A., et al.
Publicado: (2023) -
Correction: More than blood: app-tracking reveals variability in heavy menstrual bleeding construct
por: Shea, Amanda A., et al.
Publicado: (2023) -
Erratum To: The Messiness of The Menstruator: Assessing Personas and Functionalities of Menstrual Tracking Apps
por: Pichon, Adrienne, et al.
Publicado: (2021)