Cargando…

Design and Analysis of Active Metamaterial Modulated by RF Power Level

In this paper, a radio frequency (RF)-power-modulated active metamaterial loaded with a nonlinear Schottky diode is presented. Its operating mode is a function of the incident power level. It is switched by a change in the operating state (i.e., on/off) of the Schottky diode, which is directly trigg...

Descripción completa

Detalles Bibliográficos
Autores principales: Phon, Ratanak, Lim, Sungjoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250888/
https://www.ncbi.nlm.nih.gov/pubmed/32457434
http://dx.doi.org/10.1038/s41598-020-65318-0
Descripción
Sumario:In this paper, a radio frequency (RF)-power-modulated active metamaterial loaded with a nonlinear Schottky diode is presented. Its operating mode is a function of the incident power level. It is switched by a change in the operating state (i.e., on/off) of the Schottky diode, which is directly triggered by a change in the incident power level. For instance, when a low-power RF radiation is incident on the proposed metamaterial, the Schottky diode is turned off, and the metamaterial passes a 2 GHz signal in the pass-band mode. By contrast, when a high RF power is incident, the diode is turned on, and the metamaterial reflects all frequencies in the reflection mode. The proposed active metamaterial was analysed by performing numerical simulations for both low- and high-power modes, and the proposed concept was successfully demonstrated by circuit analysis, full-wave simulation, and experimental results.