Cargando…
Partial cross mapping eliminates indirect causal influences
Causality detection likely misidentifies indirect causations as direct ones, due to the effect of causation transitivity. Although several methods in traditional frameworks have been proposed to avoid such misinterpretations, there still is a lack of feasible methods for identifying direct causation...
Autores principales: | Leng, Siyang, Ma, Huanfei, Kurths, Jürgen, Lai, Ying-Cheng, Lin, Wei, Aihara, Kazuyuki, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251131/ https://www.ncbi.nlm.nih.gov/pubmed/32457301 http://dx.doi.org/10.1038/s41467-020-16238-0 |
Ejemplares similares
-
Detecting Causality from Nonlinear Dynamics with Short-term Time Series
por: Ma, Huanfei, et al.
Publicado: (2014) -
Randomly distributed embedding making short-term high-dimensional data predictable
por: Ma, Huanfei, et al.
Publicado: (2018) -
Detection for disease tipping points by landscape dynamic network biomarkers
por: Liu, Xiaoping, et al.
Publicado: (2019) -
Predicting future dynamics from short-term time series using an Anticipated Learning Machine
por: Chen, Chuan, et al.
Publicado: (2020) -
Basin stability in delayed dynamics
por: Leng, Siyang, et al.
Publicado: (2016)