Cargando…

Histone Deacetylase Inhibitor Sensitizes ERCC1-High Non-small-Cell Lung Cancer Cells to Cisplatin via Regulating miR-149

Resistance to platinum-based chemotherapy becomes a major obstacle in non-small-cell lung cancer (NSCLC) treatment. Overexpression of the excision repair cross-complementing 1 (ERCC1) gene is reported to negatively influence the effectiveness of cisplatin-based therapy for NSCLC cells. In this study...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yuwen, Chen, Danyang, Yi, Yanmei, Zeng, Shanshan, Liu, Shuang, Li, Pan, Xie, Hui, Yu, Pengjiu, Jiang, Guanmin, Liu, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251316/
https://www.ncbi.nlm.nih.gov/pubmed/32478168
http://dx.doi.org/10.1016/j.omto.2020.05.001
Descripción
Sumario:Resistance to platinum-based chemotherapy becomes a major obstacle in non-small-cell lung cancer (NSCLC) treatment. Overexpression of the excision repair cross-complementing 1 (ERCC1) gene is reported to negatively influence the effectiveness of cisplatin-based therapy for NSCLC cells. In this study, we confirm that high ERCC1 expression correlates with cisplatin resistance in NSCLC cells. Importantly, histone deacetylase inhibitors (HDACis) re-sensitize ERCC1-high NSCLC cells to cisplatin both in vitro and in vivo. Mechanistically, the HDACi induces the expression of miR-149 by acetylation and activation of E2F1, which directly targets ERCC1 and inhibits ERCC1 expression. Inhibition of miR-149 reverses the promotion effect of HDACis on cisplatin-induced DNA damage and cell apoptosis in ERCC1-high NSCLC cells. In conclusion, this study reveals a novel mechanism by which HDACis re-sensitizes ERCC1-high NSCLC cells to cisplatin via regulation of the E2F1/miR-149/ERCC1 axis, and we propose that combination of HDACis and cisplatin might hold promise to be a more effective therapeutic paradigm for ERCC1-high NSCLCs.