Cargando…
Interpretable Learning Approaches in Resting-State Functional Connectivity Analysis: The Case of Autism Spectrum Disorder
Deep neural networks have recently been applied to the study of brain disorders such as autism spectrum disorder (ASD) with great success. However, the internal logics of these networks are difficult to interpret, especially with regard to how specific network architecture decisions are made. In thi...
Autores principales: | Hu, Jinlong, Cao, Lijie, Li, Tenghui, Liao, Bin, Dong, Shoubin, Li, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251440/ https://www.ncbi.nlm.nih.gov/pubmed/32508974 http://dx.doi.org/10.1155/2020/1394830 |
Ejemplares similares
-
GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification
por: Hu, Jinlong, et al.
Publicado: (2021) -
Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review
por: Hull, Jocelyn V., et al.
Publicado: (2017) -
Narrowband Resting-State fNIRS Functional Connectivity in Autism Spectrum Disorder
por: Sun, Weiting, et al.
Publicado: (2021) -
Corrigendum: Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review
por: Hull, Jocelyn V., et al.
Publicado: (2018) -
Sex Differences in Resting-State Functional Connectivity of the Cerebellum in Autism Spectrum Disorder
por: Smith, Rachel E. W., et al.
Publicado: (2019)