Cargando…
Deep learning COVID-19 detection bias: accuracy through artificial intelligence
BACKGROUND: Detection of COVID-19 cases’ accuracy is posing a conundrum for scientists, physicians, and policy-makers. As of April 23, 2020, 2.7 million cases have been confirmed, over 190,000 people are dead, and about 750,000 people are reported recovered. Yet, there is no publicly available data...
Autores principales: | Vaid, Shashank, Kalantar, Reza, Bhandari, Mohit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251557/ https://www.ncbi.nlm.nih.gov/pubmed/32462314 http://dx.doi.org/10.1007/s00264-020-04609-7 |
Ejemplares similares
-
Risk of a second wave of Covid-19 infections: using artificial intelligence to investigate stringency of physical distancing policies in North America
por: Vaid, Shashank, et al.
Publicado: (2020) -
Deep reinforcement learning: frontiers of artificial intelligence
por: Sewak, Mohit
Publicado: (2019) -
Deep Learning-based Artificial Intelligence Improves Accuracy of Error-prone Lung Nodules
por: Lan, Chou-Chin, et al.
Publicado: (2022) -
Differential Biases and Variabilities of Deep Learning–Based Artificial Intelligence and Human Experts in Clinical Diagnosis: Retrospective Cohort and Survey Study
por: Cha, Dongchul, et al.
Publicado: (2021) -
Explainable Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers
por: Palatnik de Sousa, Iam, et al.
Publicado: (2021)