Cargando…

Measuring the impact of sea surface temperature on the human incidence of Vibrio sp. infection in British Columbia, Canada, 1992–2017

BACKGROUND: Vibrio growth in the environment is related to sea surface temperature (SST). The incidence of human Vibrio illness increased sharply in British Columbia (BC) between 2008 and 2015 for unknown reasons, culminating in the largest outbreak of shellfish-associated Vibrio parahaemolyticus (V...

Descripción completa

Detalles Bibliográficos
Autores principales: Galanis, Eleni, Otterstatter, Michael, Taylor, Marsha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251872/
https://www.ncbi.nlm.nih.gov/pubmed/32460848
http://dx.doi.org/10.1186/s12940-020-00605-x
Descripción
Sumario:BACKGROUND: Vibrio growth in the environment is related to sea surface temperature (SST). The incidence of human Vibrio illness increased sharply in British Columbia (BC) between 2008 and 2015 for unknown reasons, culminating in the largest outbreak of shellfish-associated Vibrio parahaemolyticus (Vp) in Canadian history in 2015. Our objective was to assess the relationship between SST and Vibrio illness in BC, Canada during 1992–2017 and assess the role of SST and other environmental factors in the 2015 Vp outbreak. METHODS: Cases of Vibrio infection reported to the BC Centre for Disease Control during 1992–2017 were used. SST data were obtained from NOAA and NASA. We assessed changes in incidence trend of annual Vibrio cases during 1992–2017 using a Poisson regression. We assessed the correlation between annual Vibrio cases and the average annual maximum SST using a Spearman rank-order correlation. We modeled the association between weekly Vp case counts, SST and other environmental factors during 2007–2017 using a Poisson regression. RESULTS: There was a significant increase in Vibrio cases between 2008 and 2015 (annual slope = 0.163, P < 0.001). Increased Vibrio incidence was observed in most El Niño years. There was a significant correlation between annual Vibrio cases and maximum SST from 1992 to 2017 (r = 0.46, P = 0.018). Our model captured observed seasonal variation in shellfish-associated Vp in most years, but underestimated the 2015 Vp outbreak. CONCLUSIONS: Vibrio incidence has been increasing concurrently with increasing SST in BC during 2008–2015. The 2015 Vp outbreak was not fully explained by climatic factors and may in part have been associated with other factors. Vp subtyping would be useful in the future to understand the combined effects of SST changes and strain emergence.