Cargando…
Predicting the Landscape of Recombination Using Deep Learning
Accurately inferring the genome-wide landscape of recombination rates in natural populations is a central aim in genomics, as patterns of linkage influence everything from genetic mapping to understanding evolutionary history. Here, we describe recombination landscape estimation using recurrent neur...
Autores principales: | Adrion, Jeffrey R, Galloway, Jared G, Kern, Andrew D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253213/ https://www.ncbi.nlm.nih.gov/pubmed/32077950 http://dx.doi.org/10.1093/molbev/msaa038 |
Ejemplares similares
-
Discovery of Ongoing Selective Sweeps within Anopheles Mosquito Populations Using Deep Learning
por: Xue, Alexander T, et al.
Publicado: (2020) -
DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data
por: Poirion, Olivier B., et al.
Publicado: (2021) -
A Deep-Learning Approach for Inference of Selective Sweeps from the Ancestral Recombination Graph
por: Hejase, Hussein A, et al.
Publicado: (2021) -
MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors
por: Williams, Justin, et al.
Publicado: (2021) -
DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
por: Angermueller, Christof, et al.
Publicado: (2017)