Cargando…

MiR-30e-5p inhibits the migration and invasion of nasopharyngeal carcinoma via regulating the expression of MTA1

The study explored the effect of miR-30e-5p on nasopharyngeal carcinoma (NPC). MiR-30e-5p levels in NPC cancer and adjacent normal samples, in metastatic and non-metastatic cancer samples of NPC, and in NP69 cell and five NPC cell lines were determined by quantitative real-time polymerase chain reac...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Weiqun, Yao, Wenfeng, Li, Haolin, Chen, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253402/
https://www.ncbi.nlm.nih.gov/pubmed/32458989
http://dx.doi.org/10.1042/BSR20194309
Descripción
Sumario:The study explored the effect of miR-30e-5p on nasopharyngeal carcinoma (NPC). MiR-30e-5p levels in NPC cancer and adjacent normal samples, in metastatic and non-metastatic cancer samples of NPC, and in NP69 cell and five NPC cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between miR-30e-5p and MTA1 was confirmed by dual-luciferase reporter assay, Western blot and qRT-PCR. The viability, migration and invasion of 5-8F and 6-10B cells were determined by CCK-8, scratch test and transwell assays, respectively. The levels of migration-related proteins (vimentin and Snail) and invasion-related proteins (MMP2 and MMP3) in NPC cells were detected by Western blot. The results showed that low expression of miR-30e-5p was associated with HNSC cancer, NPC, metastasis of NPC and NPC cell lines. Overexpressed miR-30e-5p in HNSC cancer and NPC was predictive of a better prognosis of patients. In addition, the viability, migration and invasion were reduced by up-regulating miR-30e-5p in 5-8F cells, but promoted by down-regulated miR-30e-5p in 6-10B cells. MiR-30e-5p reversed the migration and invasion of NPC cells regulated by MTA1, and inhibited migration and invasion of NPC cells via regulating MTA1 expression.